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Preface

Historically, commutative algebra, whose foundations were laid by Dedekind,
Hilbert, Noether, and Krull, has developed in step with algebraic geometry, number
theory, representation theory, combinatorics, and, recently, with statistics. The
development of modern commutative algebra has been very much influenced by
the work of Kaplansky [126], Zariski—Samuel [220], Nagata [151], and Matsumura
[145].

The trend of combining commutative algebra with combinatorics originated in
the pioneering work by Richard Stanley [194] in 1975, where squarefree monomial
ideals played an important role. Since then, the study of squarefree monomial ideals
from viewpoints of both commutative algebra and combinatorics has become a
very active area of research. The standard references regarding this area include
the monographs of Stanley [199], Hibi [105], Bruns—Herzog [27], Miller—Sturmfels
[146], Bruns—Gubeladze [25], and Herzog—Hibi [94].

Since the early 1990s binomial ideals became gradually fashionable. They now
appear in various areas of commutative algebra and combinatorics as well as of
statistics. A comprehensive analysis of the algebraic properties of binomial ideals,
including their primary decompositions, was given by Eisenbud—Sturmfels [58].
Among the binomial ideals, toric ideals form a distinguished class which has first
been considered and studied by Conti—Traverso [41] in the algebraic study of integer
programming by using the theory of Grobner bases. Sturmfels, in his influential
monograph [202], presented a first systematic treatment of toric ideals. Exciting
applications of the theory of toric ideals and their Grobner bases to statistics were
first explored by Diaconis and Sturmfels [53] with creating a new area of research,
called computational algebraic statistics.

The present text invites the reader to become acquainted with current trends in the
combinatorial and statistical aspects of commutative algebra with the main emphasis
on binomial ideals. Apart from a few exceptions, where we refer to the books [27,
135, 145], only basic knowledge of commutative algebra is required to follow most
of the text. Part I consists of a self-contained quick introduction to the modern theory
of Grobner bases (Chapter 1) and of reviews on several concepts of commutative
algebra (Chapter 2) which are frequently used in later chapters. Part II supplies
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viii Preface

the reader with the ABC of binomial ideals (Chapter 3) and with that of convex
polytopes (Chapter 4). Part III provides several aspects of the theory of binomial
ideals. Topics include edge rings and edge polytopes (Chapter 5), join-meet ideals
of finite lattices (Chapter 6), binomial edge ideals (Chapter 7), ideals generated by
2-minors (Chapter 8), and binomial ideals arising from statistics (Chapter 9). Each
chapter of Part III may be read independently.

We are now in the position to discuss the contents of each chapter of the present
text in detail.

Chapter 1 summarizes the fundamental material on Grobner bases. Starting with
Dickson’s Lemma which is a classical result in combinatorics, the definition of
Grobner bases is introduced and the division algorithm is discussed. We then come
to the highlights of the foundation of Grobner bases, viz., Buchberger’s criterion and
Buchberger’s algorithm. Furthermore, the elimination theorem and its application
are presented and the notion of universal Grobner bases is considered.

Chapter 2 introduces the nonspecialist to the algebraic and homological concepts
from commutative algebra, which are relevant for the material presented in this text.
Topics include graded rings and modules, Hilbert functions, finite free resolutions,
Betti numbers, linear resolutions, linear quotients, dimension and depth, Cohen—
Macaulay rings, and Gorenstein rings. Grobner basis techniques in the study of
ideals and algebras are discussed with a focus on Koszul algebras.

Chapter 3 provides a short introduction to the main topics of the present text,
namely, binomials and binomial ideals. Some of the elementary properties of
binomial ideals are discussed, including the important fact that the reduced Grobner
basis of a binomial ideal consists of binomials. Toric ideals are identified as
those binomial ideals which are prime ideals. Special attention is paid to lattice
ideals. Finally Graver bases, Lawrence ideals, and squarefree divisor complexes are
introduced and studied.

Chapter 4 is a quick introduction to the fundamental theory of convex polytopes.
Integral convex polytopes are mainly studied. After recalling some basic definitions
and facts on convex polytopes, the integer decomposition property and normality
of convex polytopes are discussed. Then unimodular coverings together with
unimodular triangulations of convex polytopes are introduced. Especially, the role
of Grobner bases in the modern analysis of convex polytopes is emphasized.

Chapter 5 deals with edge polytopes and edge rings of finite graphs. The problem
when the edge polytope of a finite graph is normal as well as the problem when the
toric ideal of an edge ring is generated by quadratic binomials is mainly studied.
These problems, whose solutions are provided in the language of finite graphs, were
the starting point on the research of edge polytopes and edge rings. Furthermore, a
characterization for the edge ring of a bipartite graph to be Koszul is supplied.

Chapter 6 offers the study on a special class of binomial ideals, the so-
called join-meet ideals, which arise from finite lattices. In the algebraic study of
join-meet ideals, Birkhoff’s fundamental structure theorem for finite distributive
lattices together with a characterization of distributive lattices due to Dedekind is
indispensable. One of the basic facts is that the join-meet ideal of a finite lattice is a
prime ideal if and only if the lattice is distributive. An example of a modular lattice
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whose join-meet ideal is not radical is presented. In addition, join-meet ideals of
non-distributive modular lattices and of planar distributive lattices are studied.

Chapter 7 is a big chapter whose topic is the study of binomial edge ideals arising
from finite graphs. This is one of the most studied classes of binomial ideals. Their
appeal results from the fact that the homological properties of these ideals reflect
nicely the combinatorics of the underlying graphs. A basic result is that the binomial
edge ideal of a finite graph possesses a squarefree initial ideal, which guarantees
that the binomial edge ideal of a finite graph is radical. The study on primary
decomposition, Cohen—Macaulayness, regularity as well as Koszulness of binomial
edge ideals is achieved. In addition, related classes of ideals such as permanental
edge ideals and Lovasz—Saks—Schrijver ideals are also introduced and discussed.

Chapter 8 is devoted to the study of ideals generated by sets of 2-minors.
Among them are ideals of adjacent minors, inner minors of collections of cells,
and polyominoes. It is mainly discussed when the residue class rings by the
binomial ideals of these types are integral domains, normal, Cohen—-Macaulay,
or Gorenstein. Furthermore, Grébner bases as well as primary decompositions of
these binomial ideals are studied. A pending question of polyomino ideals is to
classify all polyomino ideals which are prime. In addition, the conjecture that every
polyomino ideal is radical is of interest. We show that a polyomino ideal is prime if
the polyomino is simple and find toric presentations of simple polyominoes.

Chapter 9 invites the reader, who has never studied statistics before, to explore
the exciting new research area of algebraic statistics and its relation to toric ideals
and their Grobner bases. First, basic concepts on statistics are explained in detail.
In our study on algebraic statistics, it is required to understand what the Markov
chain Monte Carlo method is. Second, the relationship between Markov bases of
contingency tables and the sets of binomial generators of toric ideals is studied
with fascinating applications of commutative algebra to statistics. Furthermore, the
role of normality of toric rings in statistics is examined, and toric rings and toric
ideals of hierarchical models are discussed. Finally, Segre—Veronese configurations
and nested configurations for testing independence in group-wise selections are
introduced.

Each section is concluded with a list of problems, which are intended to com-
plement and provide better understanding of the topics treated there. References,
background and related topics, and results are explained in Notes located at the end
of each chapter.

We have tried as much as possible to make our presentation self-contained, and
we believe that combinatorialists as well as statisticians who are familiar with only
basic facts on commutative algebra will be able to understand most of the present
text without having to consult other textbooks or research papers.

Essen, Germany Jiirgen Herzog
Suita, Osaka, Japan Takayuki Hibi
Sanda, Hyogo, Japan Hidefumi Ohsugi

March 2017
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Chapter 1 ®
Polynomial Rings and Grobner Bases oy

Abstract The purpose of Chapter 1 is to provide the reader with sufficient
knowledge of the basic theory of Grobner bases which is required for reading the
later chapters. In Section 1.1, we study Dickson’s Lemma, which is a classical result
in combinatorics. Grobner bases are then introduced and Hilbert’s Basis Theorem
and Macaulay’s Theorem follow. In Section 1.2, the division algorithm, which is
the framework of Grobner bases, is discussed with a focus on the importance of
the remainder when performing division. The highlights of the fundamental theory
of Grobner bases are Buchberger’s criterion and Buchberger’s algorithm presented
in Section 1.3. Furthermore, in Section 1.4, elimination theory will be introduced.
This theory is very useful for solving a system of polynomial equations. Finally, in
Section 1.5, we discuss the universal Grobner basis of an ideal. This is a finite set
of polynomials which is a Grobner basis for the ideal with respect to any monomial
order.

1.1 Dickson’s Lemma and Grobner Bases

A monomial u in the variables x1, x2, ..., x, is a product of the form

n
_ ai _ ,ay _a - _a
M—l_[)(fi —.Xl .Xz X

n
i=1

where each g; is a nonnegative integer. We often use the notation u = x?, where
a= (a,an,...,a,) € Z';O. The degree of u is 2?21 a;. For example, the degree
of XSXSX6 is9. In particulazr 1(= x?xg - -x,?) is a monomial of degree 0. A rerm is
a monomial together with a nonzero coefficient. For example, —7x§xf;x6 is a term
of degree 9 with —7 its coefficient. A constant term is the monomial 1 together with

a nonzero coefficient.

© Springer International Publishing AG, part of Springer Nature 2018 3
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4 1 Polynomial Rings and Grobner Bases

A polynomial is a finite sum of terms. For example,

2
2 2 3.2 3
[ =-=5x{xx35 + 3 Xoxzxs —x3 — 7

is a polynomial with 4 terms. The monomials appearing in f are
2. .2 3.2 .3
X{X2X3, X2X3X5, x3, 1

and the coefficients of f are
2
-5, =, -1, —7.
3

The degree of a polynomial is defined to be the maximal degree of monomials which
appears in the polynomial. For example, the degree of the above polynomial f is 6.
With an exception 0 is regarded as a polynomial, but the degree of 0 is undefined.
If the degree of all monomials appearing in a polynomial is equal to g, then the
polynomial is called a homogeneous polynomial of degree g. For example,

3
—7x12x3 + gxzx4x5 — xi + X1X3X5

is a homogeneous polynomial of degree 3.

Let K be a field and S = K[x1,x2,...,x,] the set of all polynomials in
the variables xi, x2, ..., x, with coefficients in K. If f and g are polynomials
belonging to K[x1, x2, ..., x,], then the sum f 4 g and the product fg can be
defined in the obvious way. It then turns out that S is a commutative algebra, which
is called the polynomial ring in n variables over K.

Let .#,, denote the set of monomials in the variables x1, x2, ..., x,. When we
deal with monomials, we often use u, v, and w instead of ]_[f'=1 xi“" unless confusion
arises.

We say that a monomial u = []}_, x{" divides v =[]}_, x
forall 1 <i <n.We write u | v if u divides v.

Let M be a nonempty subset of .#,,. A monomial u € M is called a minimal
element of M if the following condition is satisfied: If v € M and v | u, then v = u.

bi

;' if one has a; < b;

Example 1.1

(a) Letn = 1. Then a minimal element of a nonempty subset M of .#] is unique.
In fact, if ¢ is the minimal degree of monomials belonging to M, then the
monomial xi{ is the unique minimal element of M.

(b) Let n = 2 and M a nonempty subset of .#>. Then the number of minimal
elements of M is at most finite. To see why this is true, suppose that u; =

xi”xé” LUy = xfzxé’z, ... are the minimal elements of M witha; < ay < ....
If a; = a;+1, then either u; or u;41 cannot be minimal. Hence a; < ay < .. ..
Since u; cannot divide u;41, one has b; > b;;+1. Thus b1 > by > .... Hence the

number of minimal elements of M is finite, as desired.
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Example 1.1 (b) will turn out to be true for every n > 1. This fact is stated
in Dickson’s Lemma, which is a classical result in combinatorics and which can
be proved easily by using induction. On the other hand, however, Dickson’s Lemma
plays an essential role in the foundation of the theory of Grobner bases. It guarantees
that several important algorithms terminate after a finite number of steps.

Theorem 1.2 (Dickson’s Lemma) The set of minimal elements of a nonempty
subset M of M, is finite.

Proof We work with induction on the number of variables. First of all, it follows
from Example 1.1 that Dickson’s Lemma is true forn = l andn = 2. Letn > 2
and suppose that Dickson’s Lemma is true for n — 1. Let y = x,,. Let N denote the
set of monomials u in the variables x, xo, ..., x,—1 satisfying the condition that
there exists b > 0 with uy? € M. Clearly N # ¢. The induction hypothesis says
that the number of minimal elements of N is finite. Let uy, us, ..., uy denote the
minimal elements of N. Then by the definition of N, it follows that, for each u;,
there is b; > 0 with u,-ybi € M. Let b be the largest integer among b1, by, .. ., b;.
Moreover, given 0 < ¢ < b, we define a subset N, of N by setting

N.={ueN : uy‘ e M}.

Again, the induction hypothesis says that the number of minimal elements of N,
is finite. Let ugc) , ugc) o uﬁf) denote the minimal elements of N.. Then we claim
that a monomial belonging to M can be divided by one of the monomials listed

below:

wyPt, gy
0 0
ui),...,ugo)
(0] (1
Uy, oo, Usy
(b=1) b1 (b=1) b1
u[ y 7‘-',usb_| y
In fact, for a monomial w = wuy® € M, where u is a monomial in
X1,X2,...,Xn—1, one has u € N. Hence if e > b, then w is divided by one of
ulyb', R usbe. On the other hand, if 0 < e < b, then, since u € N,, it follows
that w can be divided by one of uge) AT MS) y¢. Hence each minimal element of
M must appear in the above list of monomials. In particular, the number of minimal
elements of M is finite, as required. O

A nonempty subset / of S is called an ideal of S if the following conditions are
satisfied:

e If fel, gel, then f+ge€l;
e If fel, ge S, thengf el.
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Example 1.3 The ideals of the polynomial ring K[x] (= K[x1]) in one variable
can be easily determined. Let / C K[x] be an ideal with at least one nonzero
polynomial and d the smallest degree of nonzero polynomials belonging to 7. Let
g € I be a polynomial of degree d. Given an arbitrary polynomial f € I, the
division algorithm of K [x], which is learned in the elementary algebra, guarantees
the existence of unique polynomials ¢ and r such that f = gg + r, where either
r = 0 or the degree of r is less than d. Since f and g belong to the ideal I, it
follows that r = f — gg also belongs to I. If r # 0, then r is a nonzero polynomial
belonging to I whose degree is less than d. This contradicts the choice of d. Hence
r = 0. Thus

I ={qg : q€Kl[x]}

Let {fi : XA € A} be a nonempty subset of S. It then follows that the set of
polynomials of the form

> ok

reA

where g, € S is 0 except for a finite number of A’s, is an ideal of S, which is called
the ideal generated by { f,. : A € A} and is written as

({fi - 2 e A}).

Conversely, given an arbitrary ideal / C S, there exists a subset {f) : A € A} of S
with I = ({f,, : A € A}). The subset { f5, : A € A} is called a system of generators
of the ideal /. In particular, if {f), : A € A} is a finite set { f1, f>, ..., fi}, then
{ f1, f2, ..., fs}) is abbreviated as

(15 far s fo)

A finitely generated ideal is an ideal with a system of generators consisting of
a finite number of polynomials. In particular, an ideal with a system of generators
consisting of only one polynomial is called a principal ideal. Example 1.3 says that
every ideal of the polynomial ring in one variable is principal. However, the ideal
(x1,x2,...,xy) of S = K[x1, x2, ..., x,] withn > 2 cannot be a principal ideal.

Now, a monomial ideal is an ideal with a system of generators consisting of
monomials.

Lemma 1.4 Every monomial ideal is finitely generated. More precisely if I is a
monomial ideal and if {u,, : A € A} is its system of generators consisting of
monomials, then there exists a finite subset {u),, uy,, ..., uy} of {up : A € A}
such that I = (uy, Uy, ..., Uyp,).

Proof 1t follows from Theorem 1.2 that the number of minimal elements of the set of
monomials {u; : A € A} is finite. Let {uy,, u,,, ..., u,,} be the set of its minimal
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elements. We claim I = (u, u;,, ..., uy,). In fact, each f € I can be expressed
as f =), 8.y, Where g, € S is 0 except for a finite number of A’s. Then, for
each A with g, # 0, we choose u,; which divides u; and set h; = g; (43 /u;,;). Thus
guuy = hyuy,. Hence f canbeexpressedas f =) ;_, fiu,, witheach f; € S. O

Let I be a monomial ideal. A system of generators of I consisting of a finite
number of monomials is called a system of monomial generators of I.

Lemma 1.5 Let I = (uy,uy, ..., us) be a monomial ideal, where uy, uo, ..., ug
are monomials. Then a monomial u belongs to I if and only if one of u;’s divides u.

Proof The sufficiency is clear. We prove the necessity. A monomial u belonging to

I can be expressed as u = Y ;_, fiu; with each f; € S. Let f; = Zj‘i:l a}i)vy),
where 0 # a;.') € K and where each v;.l) is a monomial. Since u = Y ;_, fiu; =
2521(25;1 aﬁl)v;'))ui, there exist i and j with u = vﬁ.’)ui. In other words, there is
u; which divides u, as desired. m]

A system of generators of a monomial ideal does not necessarily consist of
monomials. For example, {)cl2 + x% , x%} is a system of generators of the monomial

ideal (x7, x3).

Corollary 1.6 Among all systems of monomial generators of a monomial ideal,
there exists a unique system of monomial generators which is minimal with respect
to inclusion.

Proof Lemma 1.4 guarantees the existence of a system of monomial generators of
a monomial ideal /. If it is not minimal, then removing redundant monomials yields
a minimal system of monomials generators.

Now, suppose that {uy, us, ..., us} and {vy, v2, ..., v;} are minimal systems of
monomial generators of /. It follows from Lemma 1.5 that, foreach 1 <i < s, there
is v; which divides u;. Similarly, there is u; which divides v;. Consequently, uy
divides u;. Since {u1, uz, ..., us} is minimal, one has i = k. Thus u; = v;. Hence
{uy,us,...,us} C {vy,va,...,v:}. Since {vy, va, ..., vy} is minimal, it follows
that {u1, ua, ..., us} coincides with {vy, v, ..., v}, as required. a

Let, in general, I and J be ideals of the polynomial ring § = K{[x1,..., x,].
Then the sum I + J, the intersection I N J, the colon ideal I : J of I with respect
to J, and the radical /T of I are defined as follows:

I+J={f+h:fel hel}

INJ={feS:fel, fel},
I:J={feS: fgelforalgelJ}
VI={feS: f*elforsomek).
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Then all of them are ideals of S. An ideal I of S is called radical if we have I = /1.
Let { f1, f2, ...} be a system of generators of I and {h1, h>, ...} that of J. Then

{f1, fo,....h1, ho, ...}

is a system of generators of I 4 J. However, to find a system of generators of 7 N J
is rather difficult, see Section 1.4.

Recall that a partial order on a set X' is a binary relation < on X such that, for
alla, b, c € X, one has

(i) a < a (reflexivity);
(i) a <band b < a = a = b (antisymmetry);
(i) a < band b < ¢ = a < c (transitivity).

A partially ordered set is a set X with a partial order < on X. It is custom to
write a < bifa < b and a # b. A total order on X is a partial order < on X' such
that, for any two elements a and b belonging to X', one has eithera < b or b < a.
A totally ordered set is a set X with a total order < on X.

Example 1.7

(a) Let T be a nonempty set and Ay the set of subsets of 7. If A and B belong to
ABr, then we define A < B if A C B. It turns out that < is a partial order on
A, which is called a partial order by inclusion.

(b) Let N > 0 be an integer and P the set of divisors of N. If a and b are divisors
of N, then we define a < b if a divides b. Then < is a partial order on &, which
is called a partial order by divisibility. If py, p2, ..., pg are prime numbers with
p1<py<---<pgandif N = p1ps--- pa, then Py coincides with H4;.

Let, as before S = K[x1, x2, ..., x,] be the polynomial ring in n variables over
K and ./, the set of monomials in the variables x1, x7, ..., x,. A monomial order
on S is a total order < on .#, such that

(1) 1 <uforalll #u e .4,
(i) ifu,v € A, andu < v, then uw < vw for all w € .#,,.

Example 1.8

by b b .
(a) Let u = x{'x5% -+ xp" and v = x|'x;%---x," be monomials. We define the

total order <jex on .#, by setting u <iex v if either () Y /_,a;i < Y i_, bi,
or (i) Z?:l a; = Z?:l b; and the leftmost nonzero component of the vector

(b1 — a1, by —ay, ..., b, — ay) is positive. It follows that <jex is a monomial
order on S, which is called the lexicographic order on S induced by the ordering
X] > X2 > -0 > Xp.

(b) Letu = x{'x3?---x," and v = xflxé’z .- xP" be monomials. We define the

total order <rey on .4, by setting u <rey v if either (i) >/, a;i < Y i_, bi,
or (ii) Z?:] a; = ZL] b; and the rightmost nonzero component of the vector
(b1 —a1, by —as, ..., b, — ay) is negative. It follows that <, is a monomial
order on S, which is called the reverse lexicographic order on S induced by the
ordering x; > xp > -+ > Xx,,.
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(¢) Letu = x{'x3> - x;" and v = xf‘xzb2 .- x” be monomials. We define the
total order <purelex ON .#;, by setting u <purelex v if the leftmost nonzero
component of the vector (b1 — a1, by — az, ..., by, — a,) is positive. It follows

that <pyrelex 1S @ monomial order on S, which is called the pure lexicographic
order on S induced by the ordering x; > x2 > - -+ > x,,.

Let m = ijip - - - i, be a permutation of [rn] = {1, 2, ..., n}. How can we define

the lexicographic order (or the reverse lexicographic order) induced by the ordering

Xiy > Xj, > -+ > x;,? First, given a monomial u = x{'x3% -+ - x," € ., we set

by by

To__ by,
u —xl .X2 )

S where b =a;;.

Tev) on ., by setting u <, v
v) if u™ <jex V7 (resp. u” <py VT), where u,v € .#,. It then
T ) is a monomial order on S. The monomial order <ﬁx

Second, we introduce the total order <j., (resp. <
(resp. u <pL,
follows that <7 (reps. <J,
(reps. <[,) is called the lexicographic order (resp. reverse lexicographic order) on
S induced by the ordering x;; > x;, > -+ > X;,.

Unless otherwise stated, we usually consider monomial orders satisfying
X] > X2 > 00 > Xy

Example 1.9 Fix a nonzero vector w = (w1, wa, ..., w,) with each w; > 0. Let <
be a monomial order on S. We then define the total order <y on .#,, as follows: If
ap_a an by by by . .
u=x'xy---x,"and v = x| 'x,” - - - x," are monomials, then we define u <y v if
either (i) Y/, ajw; < > iy bjw;, or (i) Y 7y aiw; = Y ;_;bjw; andu < v. It

follows that < is a monomial order on S.

Lemma 1.10 Let < be a monomial order on S. Let u and v be monomials with
u # v and suppose that u divides v. Then u < v.

Proof Let w be a monomial with v = wu. Since u # v, one has w # 1. The
definition of monomial orders says that 1 < w. Hence, again, the definition of
monomial orders says that 1 - u < w - u. Thus u < v, as desired. m]

Lemma 1.11 Let < be a monomial order on S. Then there exists no infinite
descending sequence of the form

uo > up >up > -,

where ug, uy, us, ... are monomials.

Proof Suppose on the contrary that such an infinite descending sequence exists. Let
M = {ug, uy,us,...}. Theorem 1.2 then guarantees that the number of minimal
elements of M is finite. Let u;,, u;,, ..., u;, be the minimal elements of M, where
i1 <ip <--- <is Now,if j > iy, then u; must be divided by one of the minimal
elements. Let, say, u;, divide u;. Then Lemma 1.10 says that u;, < u;. However,
since j > iy > i, it follows u;, > u; and a contradiction arises. O
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We fix a monomial order < on the polynomial ring S = K[xy, x2, ..., x,]. Given
a nonzero polynomial

f=au +auz + -+ auy
of S, where 0 # a; € K and where uy, us, ..., u; are monomials with
up >uy > -+ > Uy,

the support of f is the set of monomials appearing in f. It is written as supp(f).
The initial monomial of f with respect to < is the largest monomial belonging to
supp(f) with respect to <. It is written as in. (f). Thus

Supp(f) = {MI,MZs ...,M[}

and

in.(f) = {u1}.

Example 1.12 Letn =4 and f = x1x4 — x2x3. Then supp(f) = {x1x4, x2x3}. One
hasin_, (f) = {x1x4} and in__, (f) = {x2x3}.

Let f and g be nonzero polynomials of S. Then in.(fg) = in.(f) -in.(g).In
particular if w is a monomial, then in.(wg) = w - in-(g), see Problem 1.5. Using
this fact, we have a result on the radical of a monomial ideal. If u = xf] .. ~x,l;" isa

monomial of S, then its radical \/u is

\/EZ Hxi.

b; >0

For example, , /xfxzxf = x1x2x4. Thus in particular one has \/u = u if and only if

each b; < 1. A monomial u is called squarefree if \/u = u. We say that a monomial
ideal 1 is squarefree if I = /1.

Lemma 1.13 Let {uy, us, ..., us} be the minimal system of monomials generators
of the monomial ideal I = (uy,ua,...,us) of S. Then VI = WSui, ..., Jus).
Furthermore, 1 is squarefree if and only if u; is squarefree forall 1 <i <.

Proof Letu = xf‘xgz .. -x,}{" € I be a monomial and N = max{by, by, ..., b,}.

Then ﬁN elandu € VI. Thus each of /u1, ..., \/us belongs to VI

We now show that /T C (Ju1, ..., Jus). Let < be a monomial order on S. Let
0+ f € +/I and write f = Zi:l crwg, where 0 # ¢; € K and wy is a monomial
with wy = in<(f). If fV € I, then one can write f¥ = Y"_, hju; with each
hi € S. Thus in<(fV) = inc ()N = w} is divided by one of uy, ..., us. Thus
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wy € (Jui, ..., /us). Hence f — ciw; € V1. Now, by using induction on ¢, it

follows that f — ciwy € (Ju1, ..., J/us). Thus f € (Jui, ..., J/uy), as desired.
For the second part, we only need to show that if / is squarefree, then u; = /u;

for 1 <i <s. Since \/u; divides u;, each u; with i # j cannot divide ,/u;. Hence,

ifui#ﬁ,onehasﬂg{l.ThusI#ﬁ. O

Let I be an ideal of the polynomial ring S with I # (0). The monomial ideal
generated by {in.(f) : 0 # f € I} 1is called the initial ideal of I with respect to <
and is written as in_ (7). In other words,

in.(l) = ({in<(f) : 0 f el}).

In general, however, even if I = ({fi}ica), it is not necessarily true that in_ (1)
coincides with ({in<(f3)}rea).

Example 1.14 Letn =7.Let f = x1x4 —x0x3, g = xax7 —x5x¢ and I = ( f, g).
Then in., (f) = x1x4, in.,, (g) = xax7. Leth = x7f — x18 = X1X5%6 — X2X3X7.
Since h € I, it follows that in.,, (h) = x1x5x6 € in., (I). However, xxsxs &
(x1x4, x4x7). Hence (x1x4, x4x7) # in, ().

Now, Lemma 1.4 says that the monomial ideal in- (1) is finitely generated. Thus
there exists a finite subset

{inc(f1),in<(f2), ..., in<(fs)}

of {in.(f) : 0# f € I} which is a system of monomial generators of in_ (/).

Definition 1.15 Let S = K[xy, x2,...,x,] be the polynomial ring and fix a
monomial order < on the polynomial ring. Let / be an ideal of S with I # (0).
Then a Grobner basis of I with respect to < is a finite set {g, g2, . . . , g5} of nonzero
polynomials belonging to / such that {in-(g1), in<(g2), ..., in-(gy)} is a system of
monomial generators of the initial ideal in_ (I).

A Grobner basis exists. However, a Grobner basis cannot be unique. In fact, if
{g1, 82, ..., 85} is a Grobner basis of I, then any finite subset of 7 \ {0} which
contains {g1, g2, ..., &s} is again a Grobner basis of I.

Corollary 1.6 says that the monomial ideal in. (/) possesses a unique minimal
system of monomial generators. We say that a Grobner basis {g1, g2,..., &5}
of I is a minimal Grobner basis of I if {in.(g1),in<(g2),...,in-(gs)} is a
minimal system of monomial generators of in. (/) and if the coefficient of in_ (g;)
coincides with 1 for all 1 < i < s. A minimal Grobner basis exists. However,

a minimal Grobner basis may not be unique. For example, if {g1, g2, 83, ..., &}
where s > 1, is a minimal Grobner basis of I with in.(g;) < in-(g2), then
{g1, 82+ g1, 83, .-, &} is again a minimal Grobner basis of 1.

Theorem 1.16 Every Grobner basis of an ideal I C S is a system of generators

of I.
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Proof Let I be an ideal of S and {g1, g2, ..., g5} a Grobner basis of I with respect
to a monomial order <. Then

in (I) = (in<(g1),in<(g2), ..., in<(g))-

We claim I = (g1, g2, ..., &s)-

Let 0 # f € I. Since in.(f) € in-(I), there exists a monomial w together
with 1 <i < s suchthatin.(f) = w -in-(g;). Thus in.(f) = in-(wg;). Let ¢;
be the coefficient of in_(g;) in g; and ¢ the coefficient of in_(f) in f. Let f() =
cif —cwg; € I.If fD =0, then f = (c/c;))wg; € (81,82, .., 8s)-

Let £ £ 0. Then in_(f(V) < in_(f). In the case that (1 = 0, the same
technique as we used for f can be applied to £ and we obtain f® e I.If f® =
0, then D belongs to (g1,82,...,8s) and f € (g1,82,...,85). If f® # 0,
then in_(f@®) < in_(fD). In general, if f*=D =£ 0, then the same technique
as we used for f can be applied to f*~D and we obtain f® e 1.1f f® = 0,
then f*=D sk=2 () belong to (g1, g2,...,&s) and f € (g1, 82, ..., &)
If f® £0, thenin_ (f®) < in_ (f*=D),

Now, suppose that f* =£ 0 for all k > 1. Then the infinite sequence

inc(f) > inc(fM) > - > in (F4 D) > inc (f ) > -
arises. However, Lemma 1.11 rejects the existence of such a sequence. In other

words, there is g > 0 with f @ = 0, as desired. O

Since a Grobner basis is a finite set, Theorem 1.16 yields the so-called Hilbert
Basis Theorem.

Corollary 1.17 (Hilbert Basis Theorem) Every ideal of the polynomial ring is
finitely generated. More precisely, given a system of generators {f). : A € A} of
an ideal I of S, there exists a finite subset of {f,, : L € A} which is a system of
generators of 1.

Proof Theorem 1.16 guarantees that every ideal of the polynomial ring is finitely
generated. Let I = ({f), : » € A}) be anideal of S and {fi, f>2, ..., fs} a system
of generators of I consisting of a finite number of polynomials. Then, for each
1 <i <, there exists an expression of the form f; = Z)LeA h(kl)f;” where hgf) es
is 0 except for a finite number of A’s. Let

Ai={reA:h #£0).
Then the finite set
{f)L T A€ UleA,'}

is a system of generators of /. O
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Example 1.18 Letn = 10 and [ the ideal of K[x1, x2, ..., x10] generated by

S1 = x1x8 — x2x6, f2 = x2X9 — x3x7, f3 = x3X10 — X4x8,
Ja = xax6 — xs5x9, fs5 = x5x7 — x1X]0.
We claim that there exists no monomial order < on K[x1, x2, ..., x10] such that
{f1, f2, ..., f5}is a Grobner basis of I with respect to <.

Suppose on the contrary that there exists a monomial order < on K[x, x2, ...,
x10] such that ¢ = {f1, fa, ..., f5} is a Grobner basis of I with respect to <. First,
routine computation says that each of the five polynomials

X1X8X9 — X3X6X7, X2X9X]10 — X4X7X8, X2X6X10 — X5X7X8,
X3X6X10 — X5X8X9, X1X9X10 — X4X6X7
belongs to 1. Let, say, x1xgxg9 > x3x¢x7. Since x1xgxg9 € in. (), thereis g € ¥
such that in_(g) divides xjxgx9. Such g € ¢ must be f;. Hence xjxg > xpx¢.
Thus xpx¢ & in-(I). Hence there exists no g € ¢ such that in_ (g) divides xpxx10.
Hence xpx6x19 < x5x7x3. Thus x5x7 > x1x10. Continuing these arguments yields
X1X8X9 > X3X6X7, X2X9X]1(0 > X4X7X8, X2X6X10 < X5X7X8,

X3X6X10 > X5X8X9, X]1X9X]10 < X4XeX7
and

X1X8 > X2X6, X2X9 > X3X7, X3X10 > X4X8,

X4X6 > X5X9, X5X7 > X1X10-
Hence

(x1x8) (x2X9) (x3x10) (X4X6) (X5Xx7) > (X2X6) (x3X7)(X4X8) (X5X9)(X1X10)-
However, both sides of the above inequality coincide with xjx3 - - - x19. This is a
contradiction.

Theorem 1.19 (Macaulay) Let I be an ideal of the polynomial ring § =
K|[x1, ..., x,] and fix a monomial order < on S. Let 2 denote the set of monomials
w of S with w & inc(I). Then A is a K-basis of the residue ring S/I as a vector
space over K.

Proof First we show that 4 is linearly independent in S/7. Let

f=cu+--+curel,
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where each 0 # ¢; € K and where each u; is a monomial of S with u; & in_(I).
Letu; < --- < u,.Since 0 # f € I, it follows that u; = in(f) must belong to
in_(I). This contradicts u; € 4.

Second, in order to prove that the vector space S/I is spanned by A, we write
(%) for the subspace of S/I spanned by . Let 0 # f € S. We then show that,
by using induction on in.(f), f belongs to (#). Let u = in.(f) and ¢ € K the
coefficient of # in f. If u € A then, by assumption of induction, one has f —c-u €
(#). Hence f € (A).Letu ¢ A. Since u € in.(I), there is a polynomial g € [
withu = in_(g). Let ¢’ € K be the coefficient of u in g. Then, again by assumption
of induction, it follows that ¢’ f — cg € (). However, in S/1, the two polynomials
c'f —cg and ¢’ f coincide. Since ¢’ # 0, one has f € (£). O

In Theorem 1.19 each monomial belonging to 4 is called standard with respect
to <.

Problems

1.1 Let [ and J be ideals of the polynomial ring S = K[xy, ..., x,]. Show that the
sum [ + J, the intersection / N J, the colon ideal [ : J of I with respect to J, and
the radical /T of I are ideals of S.

1.2 Show that there is a unique monomial order on the polynomial ring K[x] in
one variable.

1.3 Show that orders given in Examples 1.8 and 1.9 are monomial orders.

1.4 There are 20 monomials of degree < 3 belonging to S = K[x1, x2, x3]. Order
them with respect to the following monomial orders:

(a) the lexicographic order on S induced by the ordering x; > x2 > x3;
(b) the reverse lexicographic order on S induced by the ordering x; > x> > x3;
(c) the pure lexicographic order on S induced by the ordering x1 > x2 > x3.

1.5 Let f and g be nonzero polynomials of § = K[x1, ..., x,].

(a) Show thatin_(fg) =in-(f) -in-(g).
(b) Show that, if w is a monomial, then in-(wg) = w - in-(g).

1.6 Let S = K[xy, ..., x,] be the polynomial ring. For a polynomial f = )", fi €
S with f; homogeneous of degree i, each f; is called a homogeneous component of
f. Suppose that an ideal I C S is graded, that is, for each f € I, all homogeneous
components of f belong to I. Let < denote the reverse lexicographic order induced
by x; > xp > -+ > x,,. Show thatfori = 1,...,n,

in<(lﬂ -xi+17 "'7-xl’l) - (in<(1)7-xl+la "'7xn)'
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1.2 The Division Algorithm

The division algorithm plays a fundamental role in the theory of Grobner bases. In
order to aid understanding of the proof of Theorem 1.20, the reader may wish to
read Example 1.22.

Theorem 1.20 (The division algorithm) We work with a fixed monomial order
< on the polynomial ring S = Kl[x1, X2, ..., X,] and with nonzero polynomials
81,82, ..., 8s belonging to S. Then, given a polynomial 0 # f € S, there exist
f1, f2, ..., fs and [’ belonging to S with

f=he+ g+ + figs + f (1.1)

such that the following conditions are satisfied:

e If f' #£0andu € supp(f'), then none of the initial monomials in-(g;), 1 <i <
s, divides u. In other words, if f' # 0, then no monomial u € supp(f') belongs
to the monomial ideal (in<(g1), in<(g2), ...,in-(gs)).

e If fi #0, then
inc(f) > in<(figi)-

Definition 1.21 The right-hand side of the Equation (1.1) is said to be a standard
expression of f with respect to g1, g2, ..., g and f’ a remainder of f with respect
10 81,82, .-, 8s-
Proof (of Theorem 1.20) Let I = (in-(g1),in<(g2), ..., in<(gs)). If no monomial
u € supp(f) belongs to I, then the desired expression can be obtained by setting
ff=fand fi=fr=---= f; =0.

Now, suppose that a monomial u € supp(f) belongs to I and write ug for the
monomial which is biggest with respect to < among the monomials belonging to
supp(f) N 1. Let, say, in.(g;,) divide ug and wo = uo/in<(g;,). We rewrite

f= c(’)ci_olwog,-0 + hy,
where ¢, is the coefficient of ug in f and ¢;, is that of in(g;,) in g;,. Then
in.(wogiy) = wo - in<(giy) = uo < in<(f).
If either A1 = O or if 21 # 0 and no monomial ¥ € supp(h) belongs to I, then
f= céci_olwogio + h is a standard expression of f with respect to g1, g2, ..., &s
and % is a remainder of f.
If a monomial u € supp(h1) belongs to / and if u; is the monomial which is

biggest with respect to < among the monomials belonging to supp(f1) N I, then

Uy < ug
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In fact, if a monomial # with u > ug (= in<(wog;,)) belongs to supp(h1), then u

must belong to supp( f). This is impossible. Moreover, since the coefficient of u( in

f coincides with that in céci_O ! wogi,. it follows that 1y cannot belong to supp(/1).
Let, say, in.(g;,) divide u; and w; = u/in(g;,). Again, we rewrite

f= céci;]wogio + c'lci_llwlgil + ha,
where c’l is the coefficient of u1 in k1 and ¢;, is that of in.(g;,) in g;;. Then
inc(wigiy) < inc(wogiy) < in<(f).
Continuing these procedures yields the descending sequence
uo > Uy > uy > -

Lemma 1.11 thus guarantees that these procedures will stop after a finite number of
steps, say N steps, and we obtain an expression

N—1
— /o] .
f= Z CqCi, Wa8i + hy,
q=0

where either 2y = 0 or, in case of iy # 0, no monomial u € supp(sy) belongs to
1. Moreover, foreach 1 < g < N — 1, one has

in<(wqg,-q) < -+ < inc(wogiy) < in(f).

Thus, by letting > ;_, figi = Zf]vz_ol c;ci_qlwqgiq and f' = hy, we obtain a

standard expression f = Y i_, figi + f of f, as desired. |
Example 1.22 Let <jex denote the lexicographic order on K|[x, y, z] induced by
x>y>zletgg=x>—z,g =xy—land f = x> — x?>y — x> — 1. Each of
f=x—xly—x'—l=x(g+2)—x’y—x*—1
= xg1 —x2y—x2+xz— 1 =xg1 — (g1 +z)y—x2+xz—1
=xg1—yg1 —x +xz—yz—1=xg1—ygi — (g1 +2) +xz—yz—1
=x—-y—-Dgi+Gxz—yz—z—-1)

and

f=x3—x2y—x2—l=x(g1+z)—x2y—x2—1

=xg1—x2y—x2+xz—1=xg1—x(g2+1)—x2+xz—1
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=xgl—xg— x> +xz—x—l=xg —xg— (g1 +2) +xz—x—1
=@—-Dgr—xgp+@xz—x—z—-1)
is a standard expression of f with respect to g; and g, and each of xz — yz —z—1
and xz — x — z — 1 is aremainder of f.

Example 1.22 shows that in the division algorithm a remainder of f is, in general,
not unique. However,

Lemma 1.23 [f a finite set {g1, g2, ..., &s} consisting of polynomials belonging to
S is a Grobner basis of the ideal I = (g1, g2, - . ., &), then any nonzero polynomial
f € S has a unique remainder with respect to g1, g2, ..., &s-

Proof Suppose that each of the polynomials f’ and f” is a remainder of f with
respect to gi1,..., 8. Let f/ # f”. Since 0 # f' — f” € I, the initial
monomial w = in.(f’ — f”) belongs to in_(I). On the other hand, since
w belongs to either supp(f’) or supp(f”), it follows that w cannot belong to
(in<(g1),in<(g2), ...,in-(gs)). However, since {g1, ..., g5} is a Grobner basis,
the initial ideal in. (/) coincides with (in-(g1), in<(g2),...,in-(gs)). This is a
contradiction. O

Corollary 1.24 Suppose that a finite set {g1, g2, . . ., &} consisting of polynomials
belonging to S is a Grobner basis of the ideal 1 = (g1, 82,...,8s) of S. Then a
polynomial 0 # f € § belongs to I if and only if the unique remainder of f with
respectto g1, 82, ..., 8s is 0.

Proof In general, if a remainder of a polynomial 0 # f € S with respect to
21,82, ..., 8s 150, then f belongs to the ideal I = (g1, g2, ..., &s)-

Now, suppose that 0 £ f € S belongs to I and that a standard expression of f
with respectto g1, g2, ..., g 1s f = figi+ frgo+- -+ fsgs+ f'. Since f € I, one
has f' € I.If f’ # 0, then in_(f’) € in-(I). Since {g1, g2, ..., &} is a Grdbner

basis of I, one has in_(I) = (in-(g1), in=(g2), ..., in-(gs)). However, since f’ is
aremainder, in (f”) € supp(f’) cannot belong to (in-(g1),in<(g2), ..., in-(g)).
This is a contradiction. d

We work with a fixed monomial order < on the polynomial ring § =
K[x1,...,x,]. A Grobner basis {g1, g2, ..., g} of an ideal of § is called reduced
if the following conditions are satisfied:

* The coefficient of in.(g;) in g; is 1 forall 1 <i <'s;
» Ifi # j, then none of the monomials belonging to supp(g;) is divided by in- (g;).

A reduced Grobner basis is a minimal Grobner basis. However, the converse is
false. See Problem 1.9.

Theorem 1.25 A reduced Grobner basis exists and is uniquely determined.
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Proof (Existence) Let {g1, g2, ..., &} be a minimal Grobner basis of an ideal I of
S. Then {in.(g1), in<(g2), . . ., in<(gs)} is the unique minimal system of monomial
generators of the initial ideal in (/). Thus, if i # j, then in-(g;) cannot be divided

First, let 1 be a remainder of g; with respect to g2, g3, ..., gs. Since in-(g1)
can be divided by none of in.(g;),2 < j < s, it follows thatin_ (/1) coincides with
in.(g1). Thus {h1, g2, ..., g} is a minimal Grobner basis of I and each monomial
belonging to supp(h1) can be divided by none of in.(g;),2 < j <.

Second, let 7, be a remainder of g, with respectto hy, g3, ..., gs. Since in<(g2)
can be divided by none of in< (h1)(= in<(g1)), in<(g3), . .., in(g;), it follows that
in_ (h2) coincides with in-(g2) and {h1, h3, g3, ..., gs} is a minimal Grobner basis
of I with the property that each monomial belonging to supp(%;) can be divided by
none of in (hy),in<(g3), ..., in<(gs) and each monomial belonging to supp(/2)
can be divided by none of in< (h1), in(g3), ..., in-(gs).

Continuing these procedures yields polynomials 43, A4, ..., hy and we obtain a
reduced Grobner basis {hy, ho, ..., hg} of I.

(Uniqueness) If {g1, g2, ..., g5} and {g], &5, ..., g/} are reduced Grbner bases
of I, then {in_(g1),in<(g2), ...,in=(gy)} and {in_(g}),in=(g3), ..., in-(g))} are
minimal system of monomial generators of in. (/). Lemma 1.6 then says that s = ¢
and, after rearranging the indices, we may assume that in_(g;) = in<(glf ) for all
1 <i < s(=1).Let,say g — g # 0. Then in(g; — g/) < in(g;). Since
in_(g; — g;) belongs to either supp(g;) or supp(g;), it follows that none of in (g;),
Jj # i, can divide in- (g; — g;). Hence in_(g; — g/) & in- (/). This contradicts the
fact that g; — g belongs to /. Hence g; = g/ forall 1 <i <. |

We write %eq(I; <) for the reduced Grobner basis of an ideal 7 of S with respect
to a monomial order <.

Corollary 1.26 Let I and J be ideals of S. Then I = J if and only if %ea(I; <) =
Grea(J; <).

Problems

1.7 Consider the polynomials f = x2y?z + xyz? +xy*, g1 = x> — xyz + y°, and
g2 = xz2 — y?>zin S = K[x, y, z]. Give a standard expression of f with respect to

g1 and g for the following monomial orders:

(a) the lexicographic order on S induced by the ordering x > y > z;
(b) the reverse lexicographic order on S induced by the ordering x > y > z;
(c) the pure lexicographic order on S induced by the ordering x > y > z.

1.8 Let ¢ be a Grobner basis of anideal I of S = K[xj, ..., x,].

(a) Let r be aremainder of f € S with respect to ¢. Show that f belongs to /7 if
and only if r belongs to v/1.
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(b) Show that I is radical (thatis, I = VI ), if the initial ideal in- (/) is generated
by squarefree monomials,

1.9 Show that any reduced Grobner basis is a minimal Grobner basis. Give a
counterexample of the converse of the above statement.

1.3 Buchberger’s Criterion

The highlights of the theory of Grobner bases must be Buchberger’s criterion and
Buchberger’s algorithm. A Grobner basis of an ideal is its system of generators. It
is then natural to ask: Given a system of generators of an ideal, how can we decide
whether they form its Grobner basis or not? The answer is Buchberger’s criterion,
which also yields an algorithm called Buchberger’s algorithm. Starting from a
system of generators of an ideal, the algorithm supplies the effective procedure to
compute a Grobner basis of the ideal. The discovery of the algorithm is one of the
most important achievements of Buchberger.

Let, as before, S = K[x1, ..., x,] denote the polynomial ring over K. We work
with a fixed monomial order < on S and, for simplicity, omit the phrase “with
respect to <”, if there is no danger of confusion.

The least common multiple lem(u, v) of two monomials u = x{'x3? - - - x," and
v = x{”xé’z . ~x,l;" is the monomial x{'x5? - - - x,;" with each ¢; = max{a;, b; }.

Let f and g be nonzero polynomials of S. Let ¢y be the coefficient of in. (f) in
f and ¢, that of in.(g) in g. Then the polynomial

lem(inc (f).in<(g)) . lem(in.(f),in(g))

S8 = cpoina(f) Cq - in(g)

is called the S-polynomial of f and g.

In other words, the S-polynomial of f and g can be obtained by canceling the
initial monomials of f and g. For example, if f = x1x4 —x2x3 and g = x4x7 —x5x6,
then with respect to <jex one has

S(f, 8) = x7f — X18 = X1X5X6 — X2X3X7,

and with respect to <., one has

S(f, 8) = —xsx6f + X2X38 = X2X3X4X7 — X]X4X5X6.

We say that f reduces to O with respect to g1, g2, ..., g if there is a standard
expression (1.1) of f with respectto gi, g2, ..., g with f/ = 0.

Lemma 1.27 Let f and g be nonzero polynomials of S and suppose that in- (f)
and in.(g) are relatively prime, i.e., lcm(in.(f), in-(g)) = in.(f)in=(g). Then
S(f, g) reduces to 0 with respect to f, g.
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Proof To simplify the notation, we assume that each of the coefficients of in. (f)
in fandin.(g)ingis 1.Let f =in_(f)+ f1 and g = in_(g) + g1. Since in_ (f)
and in_ (g) are relatively prime, it follows that
S(f,8) =ino(g)f —in<(f)g

=@—-gnf—-(—/ g

= fig —81f.
We claim that in- (f1)in<(g) cannot coincide with in_(g1)in<(f). In fact, if we
have in_ (f1)in<(g) = in~(g1)in<(f), then, since in< (f) and in-(g) are relatively

prime, it follows that in. (f) divides in- (f1). However, since in-(f]) < in-(f),

this is impossible. Let, say, in. (f1g) < in<(g1 f). Then in_(S(f, g)) = in<(g1 f)-
Hence S(f, g) = f1g — g1 f is a standard expression of S(f, g) with respect to f, g
with a remainder 0. Thus S(f, g) reduces to 0 with respect to f, g. O

We now come to the most important theorem in the theory of Grobner bases.

Lemma 1.28 Let w be a monomial and f1, fa, ..., fs polynomials within_(f;) =
wforall 1 <i < s.Letg = Y ;_,bifi with each b; € K and suppose that
in.(g) < w. Then there exist cj; € K with

g = Z cjkS(fjs fi)-

1<j k=s

Proof Let ¢; be the coefficient of w = in.(f;) in f;. Then Y ;_, bjc; = 0. Let
gi = (1/c¢i) fi- Then

S fi) =8 — 8 1=j,k=<s.

Hence

s N
Y bifi =) bicigi
i=1 i=1

= bic1(g1—g2) + (bic1+bac2)(g2—g3) + (bict + bacy + b3c3)(g3 — g4)
+e (et bs1cs-1)(8s—1 — &) + (bicr + -+ bycg) g

Since Y 7_ bic; = 0, it follows that

N s
D bifi= (bici -+ bisicii)S(fiot. fi).
i=1 i=2

as desired. O



1.3 Buchberger’s Criterion 21

Theorem 1.29 (Buchberger’s criterion) Let I be an ideal of the polynomial ring
Sandd ={g1, g2, ..., &} a system of generators of 1. Then 4 is a Grobner basis
of I if and only if the following condition is satisfied:

(x) Foralli # j, S(gi, gj) reduces to 0 with respect to g1, g2, - . ., &s-

Proof (“Only If”’) Suppose that a system of generators 4 = {g1,g2,...,8s}1s a
Grobner basis of /. Since the S-polynomial S(g;, g;) of g; and g; belongs to the
ideal (g;, g;), we have, in particular, S(g;, g;) € 1. Since ¢ is a Grobner basis of 1,

Corollary 1.24 guarantees that S(g;, g;) reduces to O with respect to g1, g2, .. ., &s»
as required.
(“If”) Let ¥ = {g1, &2, ..., &s} be a system of generators of / which satisfies

the condition (*).

(First Step)  If a nonzero polynomial f belongs to /, then we write ¢ for the

set of sequences (h1, ho, ..., hy) with each h; € S such that
S
f=) hig. (1.2)
i=1
Since ¥ = {g1,42,...,8s} is a system of generators of I, it follows that
Jr is nonempty. We associate each sequence (hy, ha, ..., hy) € ¢ with the
monomial

8hi.h,...hy) = max{in.(h;g;) : h;gi # O}.
Then
inc(f) < 8y .hy,....hy)- (1.3)

Now, among all of the monomials &, 5,
are especially interested in the monomial

hy) With (hy, ho, ..., hy) € 5, we

,,,,,

8 = min St o o)
f (h],hz ,,,,, h,r)Ejff ( 157125000y x)

Then the inequality (1.3) says that

in.(f) < (Sf-

In the following discussion, we will assume that the monomial 8, i,,...n,)
arising from the equality (1.2) coincides with § 7.

(Second Step) Suppose for a while that in.(f) = dJy. Then, in the right-
hand side of the equality (1.2), there is h;g; # 0 with in.(f) =
inc (h;g;). In particular in.(f) belongs to the monomial ideal generated by
in<(g1),in<(g2), ..., in<(gs).
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Hence, if we can prove that in.(f) = 8 for any nonzero polynomial f € I,
then

in. (/) = (in<(g1), in<(g2), ..., in<(gs))

and ¢ turns out to be a Grobner basis of 1.
(Third Step) Now, suppose that there is a nonzero polynomial f € [ with
in.(f) < 7. If we can get a contradiction, then our proof finishes.

We rewrite the right-hand side of the equality (1.2) as

@ f= Y mg+ Y. g
in<(higi)=df inc(higi)<df
= Y c-inc(hg
inc(h;gi)=dy
+ Z (hi —ci -inc(h;))gi + Z higi,
inc(higi)=dy inc(higi)<dy

where ¢; € K is the coefficient of in.(h;) in k;. The first equality is clear. The
second equality is the consequence of the simple rewriting

hi = ¢; -inc(h;) + (hi — ¢; -in<(h;)).

A crucial fact is that every monomial u belonging to the support of

Y hi—cicinchig + Y. higi

in(higi)=5 inc(higi)<8s
satisfies u < 8 ¢. Hence, the hypothesis that in. (f) < § guarantees that
in_ < Z ¢ - in<(hl-)gi> <38
in<(higi)=5
However, since in< (h;g;) = 6, one has
in.(inc(h;)g;) = dy.
It then follows from Lemma 1.28 that, by using those S-polynomials
S(in<(hj)g;,in<(hi)gk)

within.(h;g;) = in.(hygy) = 8y and cjx € K, we can rewrite the first sum in the
right-hand side of the second equality of (#) as follows:
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Y cicinc(hi)gi =) cpSlna(hygj, inc(h)gr). (14
in_ (higi)=5y ik
Since in<(h;g;) = in<(hrgr) = &, it follows that
S(in(hj)gj, in<(hi)gr) = (1/bj)in<(hj)g; — (1/br)in< (hi) gk,
where b; is the coefficient of in. (g;) in g ;. Here each monomial u belonging to the

support of S(in.(h;)g;, in.(hi)gy) satisfies u < 4.
Let

ujk =8 /lem(in.(g;), in<(g)).

Then

WS (e, g0 = 1) [lcm(in<(gj),in<(gk)) o lcm(in<(gj),in<(gk))gk}

bj-in<(g)) ’ by, - in<(gk)
=3f[ .1 8j — .1 gk}
bj-in.(g;) by - in.(gk)
in<(hj) in< (hy)
= b, 8j — be 8k
S(@n<(hj)g;,in<(hi)gr)-

By using the equality (1.4), there exists an expression of the form

Yo ci-inc(hgi =Y cipuinS(g) g, cjk €K (1.5)
inc(higi)=dy ik

with
inc(uxS(gj, k) <dr.

The condition (x) guarantees the existence of an expression of S(g;, gx) of the form

N
ik . ik .
S(gj g0 = plfei. in(p/fg) <ino(S(g;. g, (1.6)
i=1
where pijk € S. Combining (1.6) with (1.5) yields

N
Yoo cincigi =Y cirui(y_ plian. (1.7)
J.k i=1

inc(higi)=dy
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We rewrite the right-hand side of the equality (1.7) as >_;_, &}g;. Then
inc(h}gi) < 8y.

Finally, by virtue of (1.7) together with the second equality of (), it turns out that
there exists an expression of f of the form

N
F=Y hg. ino(hg) <.

i=1
The existence of such an expression contradicts the definition of § 7, as desired. O

In applying Buchberger’s criterion it is not always necessary to check whether all
S-polynomials S(g;, g;) with i # j reduce to 0 with respect to gp, ..., g. In fact,
Lemma 1.27 says that if in-(g;) and in.(g;) are relatively prime, then S(g;, g;)
reduces to 0 with respect to g;, g;. Thus in particular S(g;, g;) reduces to 0 with
respect to g1, g2, . - ., &. Hence we only check those S-polynomials S(g;, g;) with
i # j such thatin.(g;) and in.(g;) possess at least one common variable.

Corollary 1.30 If g1, ..., g are nonzero polynomials belonging to S such that
in.(g;) and in.(g;) are relatively prime for all i # j, then {g1,...,8&) is a
Grobner basis of I = (g1, ..., &s)-

Example 1.31 Let n = 7 and consider the reverse lexicographic order <r.,. Let
f = x1x4 — x2x3, § = x4x7 — x5X¢ and I = (f, g). Then, since in., (f) = x2x3
and in. , (g) = xsxg are relatively prime, it follows that { f, g} is a Grobner basis
of I with respect to <rey.

Example 1.32 Let f = x1x4 — x2X3, 8¢ = Xx4x7 — x5x¢ and I = (f, g).
Example 1.14 shows that { f, g} cannot be a Grobner basis of I with respect to
the lexicographic order <jex. On the other hand, if & = S(f, g) = x1x5x6 — x2x3x7,
then {f, g, h} is a Grobner basis of I with respect to <jex. To see why this is true,
we must check the criterion (x) for S(f, g), S(g, h), and S(f, k). First, S(f, g) = h
reduces to 0 with respect to h. Since in.,, (g) and in., (h) are relatively prime,
S(g, h) reduces to 0 with respect to g, h. Moreover, since

S(f, h) = xs5x6f — X4h = X2X3X4X7 — X2X3X5X6 = X2X3g,

it follows that S(f, k) reduces to 0 with respect to g.

One of the advantages of Buchberger’s criterion is that it yields an algorithm,
called Buchberger’s algorithm, which supplies a procedure for computing a Grobner
basis of an ideal I of S from a system of generators of 1.

¢ Let I be an ideal of the polynomial ring S and ¥ = {g1, g2, ..., &s} its system
of generators. If each S-polynomial S(g;,g;), 1 < i < j < s, reduces to 0
with respect to g1, g2, - - ., &s, then Buchberger’s criterion guarantees that ¢ is a
Grobner basis of 1.
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* Otherwise there is S(g;, gj) with nonzero remainder g 1. It follows from the
definition of a remainder that none of in_(g;) € ¢ divides in-(gy+1). Hence the
monomial ideal

(in<(g1),in<(g2), ..., in<(gs))

is strictly contained in the monomial ideal

(in<(g1),in.(g2), ..., in.(gs), In.(gs+1)).
* Since S(g;, gj) € I, it follows that g1 | € I. Now, replace ¢ with
g/ =9V {gs+l}s
which is a system of generators of / with a redundant polynomial g;.1. We then
apply Buchberger’s criterion to ¢. If each S(g;, gj), 1 <i < j < s+ 1, reduces
to O with respect to g1, g2, ..., &s, &s+1, then Buchberger’s criterion guarantees

that ¢’ is a Grobner basis of 1.
e Otherwise there is S(gx, g¢) with nonzero remainder g, and

(in<(g1),in.(g2), ..., in(gs), in<(gs+1))

is strictly contained in

(in<(g1),in<(g2), ..., in<(gs), iN<(gs+1), IN(gs542)).

e Again, the remainder g;4, belongs to /. We thus apply Buchberger’s criterion
to 9" = 4" U {gs42}, which is a system of generators of / with redundant
polynomials g1 and gg4».

» By virtue of Theorem 1.2, it follows that the above procedure will terminate after
a finite number of steps, and a Grobner basis of / can be obtained.

* In fact, if the above procedure will eternally persist, then there exists a strictly
increasing infinite sequence of monomial ideals

(in<(g1), ..., in<(gs)) C (in<(g1), - .., in<(gs), IN<(gs+1))

c--- C (in<(gl)’ ) in<(gs)a in<(gs+1)’ D) in<(gs+k)) c--

Theorem 1.2 says that the set of minimal elements of the set of monomials

% = {in<(g1)a LR ] in<(g5)? in<(g5+1)a .. }

is finite. If

inc(giy), in<(giy), - .., In<(giy), i1 <ia<--- <lg,
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are the minimal elements of ./, then for all j > i, one has

(in<(8i)), in<(gi,), - - ., in<(gi,))
= (in<(g1),In<(g2), ..., in<(gi,), in<(8iy+1), - .., In<(g;)),

which is a contradiction.

The reader may have observed that the basic fact which guarantees that the above
procedure terminates after a finite number of steps is again Theorem 1.2. The above
algorithm which, starting from a system of generators of I, enables us to find a
Grobner basis of [ is said to be Buchberger’s algorithm

Example 1.33 We follow Example 1.18. Let n = 10 and I = (f1, f2, f3, f4, f5)
the ideal of K[x1, x2, ..., x19], where
f] = X1X8 — X2X¢, f2 = X2X9 — X3X7, f3 = X3X10 — X4X§,
fa = xax6 — xs5x9, f5 = x5%7 — X1X10.
In Example 1.18 it is shown that there exists no monomial order < such that % =
{f1, f2, f3, fa, f5} is a Grobner basis of 1. In what follows, by using Buchberger’s
algorithm, we compute a Grobner basis of I with respect to the lexicographic order

as well as that with respect to the reverse lexicographic order.
(Lexicographic order) The initial monomials of fi, f2, f3, fa, f5 are

X1X8, X2X9, X3X10, X4X6, X1X10,

respectively. Recall that if in. (f;) and in,, (f;) with i # j are relatively prime,
then S(f;, f;) reduces to 0. Thus the S-polynomials which we must check are

S(f1, f5) = x10f1 + X8 f5 = X5X7X8 — X2X6X10,

S(f3, f5) = x1f3 + x3 f5 = x3x5%7 — X1X4X8.
One has

S(f3, f5) = —x4f1 — x2X4X6 + X3X5%7

= —X4f1 — X2.f4 — X2X5X9 + X3X5X7

= —x4 f1 — x2fa — x5 2,

which reduces to 0. On the other hand, S(f1, fs) itself is a remainder with respect
to f1, f2, f3, fa, f5. Thus, letting

Jf6 = x5x7x8 — X2X6X10,
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we consider . #' = {f1, f2, f3, f4, f5. f6} to be a system of generators of I
(with a redundant polynomial fg) and apply Buchberger’s criterion to .%’. Since
in,, (f6) = x2x6x10, the S-polynomials which we must check are
S(f2, f6) = x6x10f2 + X9 fo = X5X7X8X9 — X3X6X7X10
= x7(X5X8X9 — X3x6X10) = X7(—X6 f3 — XaX6X8 + X5X8X9)

—x7(x6 f3 + X8 f4),

S(f3, f6) = x2x6 f3 + X3 fo = x3x5X7X8 — X2X4X6X8
= xg(x3x5x7 — X2X4X6) = X8(—X2f4 — x2x5X9 + X3X5X7)
= —xg(x5f2 + x2 f4),
S(fa, f6) = x2x10f4 + X4 f6 = X4X5X7X8 — X2X5X9X10
= x5(x4x7x8 — X2X9x10) = X5(—X10f2 — X3X7X10 + X4X7X8)
= —xs5(x10/2 + x7/3),
S(fs, fo) = —xax6 f5 + X1 fo = X1X5X7X8 — X2X5X6X7

= x5x7 f1.
Each of them reduces to 0. Thus .%’ is a Grdbner basis of I with respect to the
lexicographic order.
(Reverse lexicographic order) The initial monomials of f1, f2, f3, fa, f5 are

X2X6, X3X7, X4X8, X4X6, X5X7,

respectively. Thus the S-polynomials which we must check are

S(f1, fa) = —xa f1 — X2 fa4 = X2X5X9 — X1X4Xg,
S(f2, f5) = —x5f2 — x3 f5 = X1X3X10 — X2X5X9,
S(f3, fa) = —x6f3 — x8 f4 = X5X8X9 — X3X6X10-

Since
S(f1, f4) = x1 f3 + x2x5x9 — X1X3X10,
its remainder is —S( f2, f5). Thus, letting

f6 = x2x5X%9 — X1X3X10,

f7 = X5X8X9 — X3X6X10,
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we consider #” = {f1, f2, f3, f4, [5. f6, f7} to be a system of generators of I and
apply Buchberger’s criterion to .%"”. The initial monomials of fg and f7 are xpx5x9
and x5xgxo, respectively. Thus the S-polynomials which we must check are

S(f1, fo) = —x5%9 f1 — X6 fo6 = X1X3X6X10 — X1X5X8X9
= x1(X3X6X10 — X5X8X9) = —X1 f7,
S(f3, f1) = —x5Xx9 f3 — X4 f7 = X3X4X6X10 — X3X5X9X10

x3x10(X4X6 — X5X9) = X3X10 f4,

S(fs, f6) = x2x9 f5 — X7 f6 = X1X3X7X10 — X1X2X9X10
= x1x10(X3X7 — X2X9) = —Xx1X10 /2,
S(fs, f1) = x8X9 f5s — X7 f7 = X3X6X7X10 — X1X8X9X10

x10(X3X6X7 — X1X8X9) = X10(—X6 f2 + X2X6X9 — X1X8X9)
= —x10(x6 f2 + X9 f1).

Each of them reduces to 0. Thus .%” is a Grobner basis of I with respect to the
reverse lexicographic order.

Problems

1.10 Let 7 = (x> — xyz + ¥, xz%> — y?2) be an ideal of § = K[x, y, z]. Using
Buchberger’s algorithm, compute a Grobner basis of I with respect to the following
monomial orders:

(a) the lexicographic order on S induced by the ordering x > y > z;
(b) the reverse lexicographic order on S induced by the ordering x > y > z;
(c) the pure lexicographic order on S induced by the ordering x > y > z.

1.4 Elimination

Let S = K[x1, x2, ..., x,] be the polynomial ring and write B;,;,...;, for the subset
of S consisting of those f € S such that each monomial belonging to supp(f) is a
monomial in the variables x; , x;,, ..., x;,, where 1 < i < i < --- < iy, < n.
Thus

Bijiy.iy, = Klxiy, Xiy, ., Xiy, 1.
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If f and g belong to B;,;,...;,,, then the sum and the product of f and g again belong
to Bj,iy.i, - Thus Bjj,..;,, is a polynomial ring.

A monomial order < on S naturally induces a monomial order <’ on Bj,j,...i,, -
More precisely, for monomials # and v belonging to Bji,...;,» one has u <’ v if
and only if u < v in S. Unless confusion arises, the monomial order <’ on B; j,...i,,
induced by a monomial order < on S will be also written as <.

In general, if I is an ideal of S, then I N B;;,...;,, is an ideal of B;;,...;,, see
Problem 1.11. It is then natural to ask, for a given Grobner basis ¢ of I, whether
¢ N Bj,iy...i,, is a Grobner basis of I N B;j,...;, Or not.

Theorem 1.34 (The elimination theorem) Ler < be a monomial order on S and
9 a Grobner basis of an ideal I of S with respect to <. Suppose that

Foreach g € 9, one has g € Bj,i,...i, if in<(g) € Biiy--iy, - (1.8)

Then 4 N Biiy...i,, is a Grobner basis of I N Bj,j,...i,, with respect to < on Bj,j,...i,,-

Proof What we must prove is that the initial ideal in. (I N B;;,...;,) of the ideal
I N Bjji,...i,, 1s generated by

{inc(g) : g €9 N Bjjiy...iy, }-

Let u be a monomial belonging to in. (I N Bj;,...i,,). Then thereis 0 # f € I N
Biiy-iy, Within (f) = u. Since f € I, one has u € in. (/). Now, since ¥ is a
Grobner basis of 1, there is ¢ € ¢ such that in (g) divides u. Since u € Bj,,...;,, and
since in. (g) divides u, it follows that in.(g) € B;,;,...;,,- Hence the condition (1.8)
guarantees that g belongs to B; ;,...;,, . Consequently, for any monomial u belonging
to the initial ideal in.(/ N Bj,iy...i,,), there is g € 4 N Byi,...i,, such that in_(g)
divides u. Hence in. (1 N B; j,...;,,) is generated by {in.(g) : g € 4 N B iy...i,, }> as
desired. |

Corollary 1.35 Let <purelex denote the pure lexicographic order on § and
B>p = K[xp, Xpy1,...Xn].

Let 9 be a Grobner basis of an ideal I of S with respect to <purelex- Then 9 N B> »
is a Grobner basis of I N B>, with respect t0 <purelex-

Proof We must prove the condition (1.8) is satisfied. If g € ¥ and if its initial
monomial in<lereleX (g) belongs to B, then in<pllrelex (g) is a monomial in the
variables xp, X1, ... x,. Hence by the definition of the pure lexicographic order
<purelex it follows that each monomial belonging to the support of g is a monomial
inxp, Xpy1,...X,. Thus g € B>, as desired. O
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As one of the typical applications of Corollary 1.35, we discuss the problem of
computing the intersection of ideals. With adding a new variable ¢ to S, we consider
the polynomial ring

S[t] = K[ta-x13x27 "'1xn]

in n+ 1 variables. If I and J are ideals of S, then we introduce ideals ¢/ and (1 —¢)J
of S[t] as follows:
tl ={tf : fel},
A-0J={A—-0)f:feJ}.

Lemma 1.36 As ideals of S one has
INJ=¢l+0-nJ)NnSs.

Proof Let f € SbelongtoI N J.Since f € I one hastf € tI, and since f € J,
onehas(l1 —¢)f e (1 —¢)J.Hence f =tf+ (1 —t)f etl + (1 —1)J.

On the other hand, if a polynomial f(x) = f(x1,...,x,) € S belongs to 11 +
(1 —1)J, then there exist f; € I, fjf € J and hi,h’j € S[t] such that

F=tY O, x)+ 1 =0 fjOR;x).
i J

Letting # = O one has f = }; fjf(x)h’j(O, x) € J, and letting r = 1 one has
f=2, fi®hi(1,x) € I.Hence f € I NJ, as required. O

Let <purelex be the pure lexicographic order on the polynomial ring S[t] =
K[t, x1,x2,...,x,] induced by the ordering t > x; > x3 > -+ > x,. Let [

and J be ideal of S. If { f1, f>, ...} is a system of generators of I and {h1, h», ...}
that of J, then a system of generators of the ideal 1 + (1 — #)J of K[¢, x] is

{thi.tho ... (L= Dhy, (1 — Dha, ...}

Now Buchberger’s algorithm gives a Grobner basis ¢ of t1 + (1 — t)J with respect
t0 <purelex- Corollary 1.35 then guarantees that

4’ ={g €% :tdoes not appear in g }

is a Grobner basis of (71 + (1 — #)J) N S. Hence Lemma 1.36 says that 4’ is a
Grobner basis of 1 N J with respect to the pure lexicographic order on S induced by
X1 > Xxp > -+ > x,. Thus in particular ¢4’ is a system of generators of I N J.

Example 1.37 Letn = 2. Let I = (x?) and J = (xy) be ideals of K[x, y].
We compute I N J. We apply Buchberger’s algorithm to the system of generators
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{tx2, (1—1)xy} of the ideal # 1 +(1—1)J of K[¢t, x, y]. The S-polynomial of tx? and
(1 — 1)xy is x%y. We then apply Buchberger’s criterion to the system of generators
{(tx2, (1 — t)xy, x2y} of t1 + (1 —t)J. The S-polynomial of tx? and x2y is 0. The
S-polynomial of (1 —#)xy and x2y is x2y. Thus {tx2, (1 — )xy, x2y} is a Grobner
basis of 11 + (1 — ¢)J. Hence I N J = (x2y).

Example 1.38 Letn = 1. Let I = (x(x — 1)) and J = (x°) be ideals of K[x].
In order to compute / N J, Buchberger’s algorithm can be applied to the system of
generators {tx(1 — x), (1 — )x3} of the ideal t1 + (1 — ¢)J of K[z, x]. A routine
computation shows that

{tx(1 —x), (1 — t)x3, (t— xz)x, =X, - x3}
is a Grobner basis of 1 + (1 — t)J. In particular the initial ideal of 1 + (1 — ¢)J is

(x*, 7x). Hence the reduced Grobner basis of t1 + (1 —£)J is {(t — xHx, x* — x3}.
Thus I N J = (x* — x3).

Let I be a graded ideal of S and m = (x, ..., x,) the graded maximal ideal of
S. The ideal I is called saturated if I : m = I. The saturation of I is the ideal

o0
I:m™® = U(I :mb).
k=1
For a graded ideal I of S and a polynomial f € S, the saturation of I with respect
to f is the ideal
I:f* ={geS: thereexistsi > 0 such that fig el}.

Then
n
I:m™ = (U :x),
i=1
see Problem 1.13. Hence the following proposition is important.
Proposition 1.39 Let [ be an ideal of S and f a polynomial of S. Then
[:f®°=1nS,

where 1 is the ideal generated in S[t] by I and the polynomial 1 — ft.

Proof Let g be a nonzero polynomial in I : . Then f'g € I for some i > O.
Since

g=flgt + (0= fithg=flgt + A= fOQ+ ft+---+ fi7li"hg

belongs to (I, 1 — f1),wehave I : f° CINS.
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Let g be a polynomial in Ins. Suppose that [ is generated by fi, ..., f;. Then
g=aifi+- - +asfs +vdl—1f) (1.9)
for some ay, ..., as, v € S[t]. Substituting ¢ by 1/f in the Equation (1.9), we have

g=al(1/f’x17'-~vxn)fl +"'+as(1/fvxla--~»xn)fv~

For a large enough i, f"aj(l/f, X1,...,%p) belongs to S forall 1 < j < s. Then

fig = fial(l/f,xl, ce Xp) f1+ - -—i;f"as(l/f,xl, ..., Xn) fs belongs to 1. Hence
gbelongsto ! : f°. Thus I : f*° D I NS, as desired. O

On the other hand, there is another method to compute (1 : x°).

Proposition 1.40 Let I be a graded ideal of S and 4 be the reduced Grobner basis
of I with respect to the reverse lexicographic order induced by x; > x3 > -+ > xp.
Then

9 = {g/x,]; 18 €Y, ke, x,]; divides g, x,];‘H does not divide g}

is a Grobner basis of (I : x;°).

Proof Let f be a nonzero polynomial in (I : x2°). Then x,’; f € I for some i >
0. Since ¢ is a Grobner basis of I, there exists g € ¥ such that in(g) divides
in(x) f) = xlin(f). Let k > 0 be an integer such that x divides g, and xX*! does
not divide g. Then h = g/x,]f belongs to 4’. Since x,, is the smallest variable, it
follows that x,’f divides in(g) and x,’f“ does not divide in(g). Hence x, does not
divide in(h) = in(g) /x,’j. Thus in(k) divides in( f) as desired. O

Problems

1.11 Let/beanidealof S = K[xy, ..., x,]andlet B;,;,..;,, = K[xi,, Xip, ..., Xi,, 1,
where 1 <ij <ip < .-+ < i, <n.Show that I N B;j,..;, is anideal of B ;,...i,

1.12 Let I = (x® 4+ y?> +z%, xy + xz + yz, xyz) be an ideal of S = K[x, y, z].
By using the elimination theorem, compute a set of generators of I N K[y, z].

1.13 Let ] be a graded ideal of S = K[x1, ..., x,] and m the graded maximal ideal
of S. Show

n
[:m™ = ﬂ(} L x).
i=1
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1.14 Let I = (x1x5 — x2X4, XpX6 — X3xs5) be an ideal of § = K[x,..., x6].
Compute a set of generators of [ : (x1---x6)™ = (- (I : x{°) : x5°)--+) 1 x¢°
by using

(a) Proposition 1.39;
(b) Proposition 1.40.

1.5 Universal Grobner Bases

For anideal / C K[x], a finite set of polynomials of / is called a universal Groébner
basis of 1 if it is a Grobner basis of I with respect to any monomial order. By the
following theorem, a universal Grobner basis always exists.

Theorem 1.41 Let (0) # I C K|[x] be an ideal. Then, there exist only finitely many
initial ideals for 1.

Proof Let Xy = {in.(I) : < is a monomial order on K[x]}. Suppose that Xy is
an infinite set. We choose a nonzero polynomial f; € I. Then, since f; has only
finitely many monomials, there exists a monomial m; appearing in f] such that
Y1 ={M € Xy : m; € M} is an infinite set. Then there exists a monomial
order < such that m; € in.(I) € X;. Suppose that in.(I) = (mj). Then we
have inc (/) = (m1) C in(I) for any in_/ (/) belonging to ¥;. By Macaulay’s
Theorem 1.19, inc. (/) = (m1) = ino/(I) for any in_s(I) belonging to ¥;. Thus,
X1 = {inc (1)}, which is a contradiction. Hence, (m1) C in-(/). By Macaulay’s
Theorem 1.19 again, this means that the set of monomials w ¢ (m1) is linearly
dependent in K[x]//. Thus, there exists a nonzero polynomial f» € I such that no
monomials in f> belong to (m1). Since f> has only finitely many monomials, there
exists a monomial mj in f, such that ¥ = {M € X : my € M} is an infinite
set. Then, by Macaulay’s Theorem 1.19 and by using a similar argument as before,
it follows that there exists a monomial order < such that (m, m;) C in.(I) € X».
Thus, there exists a nonzero polynomial f3 € I such that no monomial in f3 belongs
to (m1, my). By repeating such arguments, we have an infinite ascending chain of
monomial ideals

(my) € (m1,mp) C (my,mp,m3) < ---.

Let J be a monomial ideal of K[x] generated by {m; : 0 < k € Z}. By Lemma 1.4,
J is generated by a finite set {m;,, ..., m; }. Let A, = max(Ay, ..., As). Since J =
(my1,ma, ..., my) for all k > A, this contradicts the above infinite ascending chain.

O

Corollary 1.42 For any ideal (0) # I C K|[x], there exists a universal Grobner
basis of 1.
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Proof Let, as before, %.4(I; <) be the reduced Grébner basis of I with respect to
a monomial order <. Then, by Theorem 1.41, the union

U Grea(I; <)

<: monomial order

is a finite set. Moreover, since this set contains the reduced Grobner basis with
respect to an arbitrary monomial order, it is a Grobner basis of I with respect to an
arbitrary monomial order. O

We call a universal Grobner basis given in the proof of Corollary 1.42 the
universal Grobner basis of 1.

Problems

1.15 Let I = (x — y,x — z) be an ideal of S = K[x, y, z]. Compute a universal
Grobner basis of 1.

Notes

In the 1960s, Buchberger invented the notion of Grobner bases in his PhD
thesis [30]. Hironaka [114] independently introduced a similar notion “standard
bases” for formal power series rings. Standard textbooks for Grobner bases are,
e.g., Adams—Loustaunau [1], Becker—Weispfenning [13], and Cox-Little-O’Shea
[44]. Buchberger’s algorithm is an important method to compute Grobner bases.
However, it is very difficult to compute Grobner bases by hand in practice. One can
use various mathematical software to compute Grobner bases. For example,

* Macaulay?2: available at http://www.math.uiuc.edu/Macaulay?2

e SINGULAR: available at https://www.singular.uni-kl.de

* CoCoA: available at http://cocoa.dima.unige.it

* Risa/Asir: available at http://www.math.kobe-u.ac.jp/Asir/asir.html

Universal Grobner bases were introduced by Weispfenning [217]. In Chapters 3
and 4, the notion of Graver bases for binomial ideals is introduced. Graver bases are
universal Grobner bases, as shown by Sturmfels—Thomas [204] for toric ideals and
by Sturmfels—Weismantel-Ziegler [205] for lattice ideals. For universal Grobner
bases of general ideals, a state polytope was introduced by Bayer—Morrison [11]
and its normal fan is called a Grobner fan which was introduced by Mora—Robbiano
[149]. See [106, Chapter 5] for details on state polytopes and Grobner fans.
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Chapter 2 ®
Review of Commutative Algebra iy

Abstract In this chapter we recall basis concepts from commutative algebra which
are relevant for the subjects treated in the later chapters. We begin with a review on
graded rings, Hilbert functions, and Hilbert series, and introduce the multiplicity and
the a-invariant of a graded module. The Krull dimension of a graded module will be
defined in terms of its Hilbert series. We will give various characterizations of the
depth of a module and its relation to the Krull dimension. These considerations
lead to Cohen—Macaulay modules and Gorenstein rings. We then describe the
relationship, known as Auslander—-Buchsbaum formula, between the depth of a
graded S-module M and its projective dimension, where S is a polynomial ring, and
study in more detail the finite minimal graded free S-resolution of M. The regularity
of M will be defined via this resolution. Koszul algebras are standard graded K-
algebras whose graded maximal ideal has a linear resolution. Unless this graded
ring is a polynomial ring, this resolution is infinite. We discuss various necessary
and sufficient conditions for Koszulness. The methods involved include Grobner
bases and Koszul filtrations.

2.1 Graded Rings and Hilbert Functions

Algebras and modules which are introduced in combinatorial contexts, in particular
toric rings, usually admit a natural graded structure. In this section we recall the
basis concepts and facts related to graded rings and modules.

Let K be a field and let S = K[x, ..., x,] be the polynomial ring over K in the
indeterminates xi, ..., x,. A polynomial f € § is called homogeneous (of degree
d), if all monomials in the support of f are of degree d. The polynomial ring S
has a decomposition S = ;. S; where for each i, S; is the K-vector space of
homogeneous polynomials of degree i. In other words, each polynomial f € S has
a unique presentation f = ) . fi with f; € S; for all i, where all f; but finitely
many are equal to 0. Notice that S;S; = S;; for all i and j. Having this example
in mind, we define
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Definition 2.1 Ler K be a field. A ring R is called a graded K -algebra, if

i) R= EBizO R;, where each R; is a K -vector space;
(i) Ro=K;
(iii) R;R; C Riyj foralli,j.

An R-module M is called a graded R-module it M = @iez M; with each M; a
K -vector space and such that R;M; C M;; for alli and j. The elements of M; are
called homogeneous of degree i. The degree of the homogeneous element x € M
will be denoted by deg x.

Given a graded R-module M and an integer a, the graded R-module M (a) shifted
by a is the R-module M equipped with the new grading M (a); = M, ; for all j.

The polynomial ring S = K|[x, ..., x,] can be graded by assigning to x; the
degree a; where ay, ..., a, are positive integers. Thus, if, for example, deg x; = 2,
degx, = 3 and degx3 = 1, then xf - x2x33 is homogeneous of degree 6. We say
that a graded K -algebra R is standard graded if R = K[R1]. Hence the polynomial
ring S is standard graded, if and only if all indeterminates x; are of degree 1.

Important examples of graded modules are graded ideals. Let R be a graded K -
algebra. Anideal I C R is called a graded ideal, if I = @jez I where I; = INR;
for all j. Anideal I C R is graded if and only if [ is generated by homogeneous
elements, see Problem 2.1.

A homomorphism ¢: M — N of graded modules is called homogeneous if
¢(M;) C N; for all i. Similarly, homogeneous K -algebra homomorphisms are
defined. For example, if I C R is a graded ideal, then the inclusion map I — R is
a graded homomorphism. More generally, let U C M be graded R-modules. Then
U is called a graded submodule of M, if the inclusion map U — M is a graded
homomorphism. In that case the factor module M/ U is again naturally graded with
grading (M/U); = M;/U; for all j. In particular, if I C R is a graded ideal, then
R/ has the structure of a graded K -algebra.

Proposition 2.2 Let R be a finitely generated graded K -algebra. Then there is a
graded polynomial ring S over K and a graded ideal I C S such that R=S/1, as
graded K -algebras.

Proof Letry, ..., r, be homogeneous generators of the K-algebra R, and let § =
K[x1, ..., x,] be the graded polynomial ring with deg x; = degr; for all i. There
is a unique K-algebra homomorphism ¢: § — R with ¢(x;) = r;. This K-algebra
homomorphism is homogeneous. Let I = Kerg, and let f € 1. We write f =
> fi with f; homogeneous of degree i. It remains to be shown that f; € I for all
i.Indeed, 0 = ¢(f) = >; ¢(fi). Since ¢(fi) € R; and since R = P, R; it follows
that ¢(f;) = O for all i. In other words, f; € I for all i. O

Let S = K[x1, ..., x,] be the graded polynomial ring with degx; = a; > 0
fori =1,...,n. Then §; is the K-vector space spanned by all monomial xP with
' ,aib; = j. Since there is only a finite number of vectors b € Zx satisfying
this identity, it follows that dimg §; < oo for all j. More generally we have
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Proposition 2.3 Let R be a finitely generated graded K -algebra and M a finitely
generated graded R-module. Then dimg M; < oo for all j.

Proof We choose a presentation S/I of R as in Proposition 2.2. Then M is a
graded S-module as well, and hence we may assume that R itself is a graded
polynomial ring. Let my, ..., m, be homogeneous generators of M. Then M; is
generated as a K -vector space by the homogeneous elements xPm; with degx +
degm; = j. In particular, each monomial x” in such an expression is of degree
< j—max{degm;: i = 1,...,r}. Obviously there exist only finitely many such
monomials. Thus the desired result follows. O

Definition 2.4 Let R be a finitely generated graded K-algebra and M a finitely
generated graded R-module. The numerical function H(M, —): 7Z — Z4 with
H(M,i) = dimg M; is called the Hilbert function of M. The formal Laurent series

Hilby (1) = Z H(M, i)t

is called the Hilbert series of M.

Example 2.5 Let as before S = KJ[xi,...,x,] be the polynomial ring. Then
H(S,i) = dimg S; is equal to the number of monomials of degree i in S. A simple
inductive argument shows that

H(S,i):(n+f_l>.

It follows that

Hilbs(1) = <” +f - l)f =4 —11)"'

i>0

We will see in Section 2.2 that if R is a standard graded K -algebra, then Hg(¢)
is always a rational function with denominator a power of 1 — 7.

As an immediate consequence of Theorem 1.19, for a graded ideal I, the
computation of the Hilbert series of S/ can be reduced to the case that [ is a
monomial ideal.

Proposition 2.6 Let < be a monomial order on S = K|[x1,...,x,], andlet] C S
be a graded ideal. Then

Hilbs/[(l) = Hilbs/in<(1)(l).

Proposition 2.6 can be improved as follows to obtain a Grobner basis criterion.
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Corollary 2.7 Let < be a monomial order on S = K[x1,...,xy],and I C S a
graded ideal. Let ¢ = {gi, ..., gn} be a homogeneous system of generators of 1
and let J = (in<(g1), ...,in<(gm)). Then ¥4 is a Grobner basis of 1 if and only if
Hilbs/j(t) = Hilbs/ in<(I) (2).

Proof Note that J C in< (/). This together with Proposition 2.6 implies the
coefficientwise inequality Hilbg,;(¢) > Hilbs/in_(;)(t) = Hilbg/;(¢). Equality
holds if and only if J = in_ (/). m|

Problems

2.1 Let R be a graded K-algebra and / C R an ideal of R. Show that / is a graded
ideal if and only if / is generated by homogeneous elements. Prove a similar result
for graded R-modules.

2.2 Letgp: M — N a homomorphism of graded R-modules. Show that Ker ¢ is a
graded submodule of M and Im ¢ is a graded submodule of N.

2.3

(a) Let0 - U - M — N — 0 be a short exact sequence of graded modules.
Show that Hilby (¢) + Hilby (1) = Hilbp, (¢).
(b) Let f1,..., fm € S = Kl[x1,...,x,] be a regular sequence (see Defini-

tion 2.12) of homogeneous polynomials with deg f; = a;. Use (a) to prove
that
. [T, (1 — %)
Hilbg/ (¢ () =
1 S/(f1seees. fm)( ) (1 —t)"
(c) Let P and Q be two monomial prime ideals of S = K[x1, ..., x,]. Use (a) and
a suitable exact sequence to compute Hilbg,pno (7).
24 LetS = K[x1, ..., x,] be the polynomial ring with grading given by degx; =
a;fori=1,...,n.

(a) Show that Hilbg(r) = 1/ [/, (1 —t%).
(b) Show that the following conditions are equivalent: (i) there exists an integer ¢
such that §; # O for all j > ¢, (ii) gcd(ay, ..., a,) = 1.

2.5 Let S = K[xy, ..., x,] be the polynomial ring. We define a Z"-grading on S
by setting S; = Kx® for a € Z" with nonnegative entries. Otherwise set S = 0. A
finitely generated S-module M is called a Z"-graded S-module ift M = @, _;» Ma
with each M, a K-vector space and such that S, My, C My, foralla, b € Z".

(a) Show that dim M, < oo for all a € Z".
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(b) We set Hilbg(M) = Y,y dimg Mat* where 8 = "1 for a =
(ay, ..., a,).Show that there exists Q(t) € Z[tlﬂ, e, tfl] and integers d; > 0
such that Hilbg(M) = Q(t)/(1 — t;)%1 -+ (1 — 1,,)%.

2.2 Finite Free Resolutions

Let K be a field. Throughout this section S will denote the standard graded

polynomial ring K[xy, ..., x,] in n indeterminates over K and m = (xq, ..., Xp)

the graded maximal ideal of S. We will study graded free S-resolutions of graded

S-modules. This will help us to better understand the nature of Hilbert functions.
We begin with a graded version of Nakayama’s lemma.

Proposition 2.8 Let M be a finitely generated graded S-module, my, ..., m,
homogeneous elements of M and denote by m; the residue class of m; in M /mM.
Then the elements my, ..., m, generate M if and only if their residue classes
mi, ..., m, generate M/mM, andmy, ..., m, is a minimal system of generators of
M ifand only if my, ..., m, is a K-basis of the graded K -vector space of M /mM.
In particular, all minimal systems of generators of M have the same length.

Proof ltis clear thatif my, ..., m, generate M, then my, ..., m, generate M /mM.
Conversely, let U C M be the submodule of M generated by my, ..., m,. Our
hypothesis implies that M = U + mM, and we want to show that U = M. Let
m € M be a homogeneous element. Since M is finitely generated, there exists an
integer ¢ such that M; = 0 for all j < ¢. We will show by induction on deg m, that
m € U. We may write m = u + fn with homogeneous elements u € U,n € N
and f € m such that degm = degu and degn < degm. If degm = ¢, thenn = 0
and m € U. Suppose now that degm > c. Since degn < degm, our induction
hypothesis implies that n € U, and hence m € U.

If my,...,m, is K-basis of M/mM, then no proper subset of {m1,...,m,}
generates M /mM. Hence by the first part, no proper subset of {mi,...,m;}
generates M. In other words, m1, ..., m, is a minimal system of generators of M.
The converse implication is obvious. O

The least number of homogeneous generators of M is denoted by w(M).

A finitely generated graded free S-module is a module F which admits a finite
basis of homogeneous elements. If the basis elements are of degree ay, .. ., a,, then
F= @;':1 S(—aj).Let M be afinitely generated graded S-module. A homogeneous
free presentation of M is a homogeneous graded epimorphism €: F — M where
F is a finitely generated graded S-module. The presentation is called minimal if
rank F = p(M). It follows from Nakayama’s lemma that the free presentation
€: F — M is minimal if and only if Kere C m where m = (x1,...,x,), see
Problem 2.6.

Now let M be a finitely generated S-module and let €: F; — M be a free
presentation of M. By Problem 2.2, Kere€ is a graded S-module for which we can
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again choose a homogeneous free presentation F; — Ker €, which composed with
the inclusion map Kere — Fy yields the exact sequence ;1 — Fp - M — 0.
Proceeding in this way we obtain an exact sequence of graded modules

> F—>---—>F—>F—>M-—>0

with F; = @ j S(—aj;) for all i and suitable integers a;;. The acyclic sequence of
graded free modules

F:...>F—>--—>F —>F—0

with Hy(F)=M is called a graded free S-resolution of M. This sequence can be
rewritten in the form

F: o> @S- > @S - P s 0. @1
j j j

The numbers b;; are called the graded Betti numbers of I.

Obviously such a resolution cannot be unique if the free presentations in the
construction of I are not minimal. One calls F a minimal graded free S-resolution
of M, if the augmentation map Fop — Ho(F) is a minimal free presentation of M,
and if moreover F; — Im(F; — F;_;) is a minimal free presentation for all i. By
what we observed before it follows that the resolution F is minimal if and only if
Im(F; — F;_1) CmF;_; foralli > 0.

An important example of a graded minimal free resolution is the resolution of
S /m which is provided by the Koszul complex: let R be any commutative ring (with
unit) and f = fi, ..., f, asequence of elements of R, and let F be a free R-module
with basis ey, ..., e,. Then we let K (f; R) be the jth exterior power of F, that is,
K;f; R) = /\j F. A basis of the free R-module K (f; R) is given by the wedge
products ey = e;; Aej, A A e where F = {i; < iz < --- < ij}. In particular,
it follows that rank K j(f; R) = (). The Koszul complex K (f; R) attached to the
sequence fis given as follows: we define the differential d : K;(f; R) — K;_(f; R)
by the formula

J
k+1
dei Aeip A--- Aeiy) = E (=D fiei, Neiy Ao Nei Aei, A e
k=1

One readily verifies that d o 3 = 0, so that K (f; R) is indeed a complex. Now if M
is any finitely generated graded S-module we set K (f; M) = K (f; R)®M and call
K (f; M) the Koszul complex of M with respect to the sequence f. The ith homology
of this complex is denoted H; (f; M).

Some of the basic properties of Koszul complexes that we are going to use can
be found in Bruns-Herzog [27]. A short introduction to this theory of complexes can
also be found in the appendix of the book [94] by Herzog-Hibi.
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In the particular case that f is the sequence x = xi,...,x, and R =
K[x1, ..., x,], the Koszul complex is acyclic because the sequence x is a regular
sequence (see Definition 2.12), and hence K (x; R) provides a graded minimal free
resolution of S/m. In what follows we will need the following fact: let G be a graded
free resolution of M. Then

H;(x; M\)=H;(G/mG) forall i, (2.2)

and this is an isomorphism of finitely generated graded K-vector spaces, see, for
example, [94, Corollary A.3.5].

It is known that any two graded minimal free resolutions are unique up to
isomorphism. Here we show

Theorem 2.9 Let M be a finitely generated free S-module, and let the numbers b;;
be the graded Betti numbers of a graded free S-resolution G of M. Furthermore let
the numbers B;; be the graded Betti numbers of a graded minimal free S-resolution
Fof M. Then

Bij <bij forall 1i,j.

In particular, the graded Betti numbers of a graded minimal free S-resolution of M
depend only on M, and hence are denoted B;;(M) and are called the graded Betti
numbers of M.
Proof Let G: --- — @; S(—j)bi — P, S(—j)?i — 0. Then H;(G/mG)
is a graded subquotient of G;/mG;=& j K(—j Yoii . Hence it follows that
dimg H;(x; M); = dimg H;(G/mG); < b;;.

On the other hand, since Im(F; | — F;) is contained in mF; for all i, it follows
that H; (x; M)=H,; (F/mF)=F/mlF. This implies that dimg H;(x; M); = B;;. Thus
the desired inequality follows. O

In the proof we have seen that
Bij(M) = dimg H;(x; M); foralli and j.

Thus, since the Koszul complex for the sequence x has length n, we obtain

Corollary 2.10 Let M be a finitely generated graded S-module. Then B;j(M) = 0
foralli and j withi > n.

The corollary implies that there are only finitely many pairs (i, j) for which
Bij(M) # 0. One defines

projdim M = max{i: B;;(M) # 0 for some j},
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Fig. 2.1 Betti diagram i projdim
T
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regl — — — — — .
and

reg(M) = max{j —i: B;j(M) # 0 for some i}.

The number projdim M is called the projective dimension of M, and the number
reg(M) is called the Castelnuovo-Mumford regularity of M.

Figure 2.1 displays the Betti diagram of a graded S-module. The corner points
of the dotted line are called the extremal Betti numbers of M and they represent
nonzero Betti numbers.

The set of Betti numbers in the jth row of the Betti diagram is called the jth
strand of M. Let d be the least degree of a generator of M. Then the dth strand
of M is called the linear strand of M. The module M is said to have a d-linear
resolution if B; ;1 j(M) = O for all i and all j # d, and M is said to have linear
relations if M is generated in degree d and B; j(M) = O for all j # d + 1. Finally,
M is said to have linear quotients, if M is generated in a single degree, and M is
minimally generated by m1, ..., m, such that the colon ideals

(my,....mi—1):m; ={f €8: fm; € (my,...,mi_1)}

are generated by linear forms.
Proposition 2.11 Suppose M has linear quotients. Then M has a linear resolution.

Proof We proceed by induction on the number of generators of M. We may assume
that M is generated in degree d. If r = 1, then M=S(—d)/I where I is an ideal
generated by linear forms. By Problem 2.12, I has a linear resolution. Thus M
has a linear resolution. Now let r > 1. By induction hypothesis, the module N,
generated by my, ..., m,_1, has a d-linear resolution. Also the module M /N has
a d-linear resolution, as the argument for »r = 1 shows. Considering the long exact
Tor-sequences arising from the short exact sequence 0 - N - M — M/N — 0,
we deduce that M has a linear resolution. |
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Problems

2.6 Let e: M — N be a graded surjective S-module homomorphism of finitely
generated graded S-modules. Show that w(M) > w(N), and that equality holds if
and only if Kere C mM.

2.7 Let I C S be an ideal generated by a regular sequence f = fi,..., f, of
homogeneous elements with deg f; = a;, see Definition 2.12. Use the fact that the
Koszul complex K (f; S) is acyclic to show that r < n and to compute the graded
Betti numbers of S/I. What is projdim S/I and what is reg S/1?

2.8 Let M be a finitely generated graded S-module. Show that

Yo (=D (M)

Hilby (t) = =1y

29 Let I C S be a nonzero graded ideal. Show that > !_(—1)*+!
> Bij(S/D) =0.
210 Let0 - U - M — N — 0 be a short exact sequence of graded modules.

Show that B;; (M) < B;;(U) + B;j(N), and give an example which shows that in
general this inequality is strict.

2.11 Show that the graded Betti numbers of a module with d-linear resolution are
determined by its Hilbert function.

2.12 Show that any ideal generated by linear forms has a linear resolution.

213 Let I C S be a graded ideal such that dimg S/I < oo (in which case
Hilbg,;(¢) is a polynomial). Show that I has a linear resolution if and only if /
is a power of the graded maximal ideal m of S.

2.14 Compute the minimal graded free resolution of (x1, x2)¥ for all k.

2.15 Let I be the ideal generated by monomials x;y; with 1 <i < j < n. Show
that the ideal 7 has a linear resolution.

2.16 LetK beafield,= K[xy, ..., x,] be the polynomial ring in the indeterminates
X1y ...y Xn, T = K[y1, ..., ym] the polynomial in the indeterminates yi, ..., Y,
M a finitely generated graded S-module with graded minimal free S-resolution F,
and N a finitely generated graded 7-module with graded minimal free T -resolution
G. Show that the tensor product F® x G of F and G over K is a graded minimal free
S® g T -resolution of M®x N, and use this fact to show that

Bii (M@K N) =Y Biy.jy (M) iy, jy(N),

where the sum is taken over all i1 and i with i1 +i, = i, and over all j; and j, with
Jitp=j
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217 Let S = K|xj,...,x,] be the polynomial ring over the field K with the
natural Z"-grading, as defined in Problem 2.5, and let M be a finitely generated
7" -graded S-module.

(a) Show that M admits a minimal Z"-graded free S-resolution F with each
Fi = @aepn S(—a)Pia®™ The integer ; o(M) are called the multigraded Betti
numbers of M.

(b) Show that the Koszul homology H;(x; M) is a Z"-graded module with

dimg H;(x; M)y = Bia forall aeZ".

2.3 Dimension and Depth

We will use graded free resolutions to define dimension and depth of a graded
S-module, where, as before, S = K[xi,...,x,] is the polynomial ring over K.
Resolutions will also be used to introduce two other important invariants of M: the
multiplicity and the a-invariant of M.

Let M be a finitely generated graded S-module. As we have seen in Problem 2.8,
the Hilbert series is a rational function of the form Hilby, () = P(¢)/(1 —t)". After
cancelation we obtain a presentation

Q1)

where Q(t) a polynomial with Q(1) # 0.

The number d is called the Krull dimension of M, and Q(1) is called the
multiplicity of M, denoted e(M). The multiplicity is always a positive number since
it is the leading coefficient of the Hilbert polynomial, see [27, Definition 4.1.5
and Proposition 4.1.9]. An equivalent definition of the Krull dimension, actually
the original one, gives the Krull dimension as the maximal length of a chain of
prime ideals in the support of M, see [27, Appendix]. Let Q(r) = > i, hit'.
The coefficient vector (hg, k1, ..., h.) is called the h-vector of M. Obviously,
e(M) = Zle h;. Finally, the a-invariant of M, denoted a(M), is the degree of
Hilbyy (¢). In other words, a(M) = deg P(t) —n = deg Q(t) — d.

Definition 2.12 Let M be a finitely generated graded S-module. A sequence f =
fi, ..., fm of homogeneous elements of positive degree of § is called a regular
sequence on M (or an M-sequence), if fi is a nonzerodivisor on M and f; is a
nonzerodivisor on M/(f1, ..., fi—1)M for all i > 0. The maximal possible length
of an M-sequence is called the depth of M, denoted depth M.

Proposition 2.13 Let M be a finitely generated graded S-module. Then depth M <
dim M.

Proof We proceed by induction on the depth M. The assertion is trivial if
depth M = 0. Suppose now that depth M = m > 0. Then there exists a regular
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sequence f = f1, ..., f,, on M. Thus f5, ..., f is aregular sequence on M/fi M.
This shows that depth M /fiM > m — 1. Suppose depth M/fiM =t > m —1. Then
there exists a regular sequence gi,..., g on M/fiM, and hence fi,g1,...,8
is a regular sequence on M of length > depth M, a contradiction. Thus
depth M/fiM = depth M — 1.

Let deg fi = a, and let 0 - M(—a) - M — M/fiM — 0 be the
exact sequence, where M(—a) — M is given by multiplication by f. Then
Hilby/ s (t) = (1 — t*)Hilby(¢). Thus, if Hilby(r) = Q()/(1 — )¢ with
d = dim M, then

(1=t90®) 00
(1-pd — QA—pd-U

Hilby/rm (t) =

where Q'(r) = Q@) + ¢ + --- + t%71). Since Q(1) # 0, we see that
Q'(1) =aQ(1) #0. Thus dimM/fiM = dimM — 1. By using the induction
hypothesis we obtain

depthM =depthM/fi1M+1<dmM/fiM+1=dimM,

as desired. O

Definition 2.14 Let M be a finitely generated graded S-module. Then M is called
a Cohen—Macaulay module if depth M = dim M.

Let f be an M-sequence. The proof of Proposition 2.13 shows that M is Cohen—
Macaulay if and only if M/(f)M is Cohen—Macaulay. Another important property
of a Cohen—Macaulay module is that it has no embedded prime ideal and that all
minimal prime ideals have the same height. Rings with this property are called
unmixed. Unmixedness for Cohen—Macaulay modules follows from the fact that
for any finitely generated graded S-module M one has depth M < dim S/ P for all
associated prime ideals of M, see [27, Proposition 1.2.13].

On the other hand, an unmixed module need not to be Cohen—Macaulay, as the
example in Problem 2.19 shows.

Theorem 2.15 (Auslander-Buchsbaum) Let M be a finitely generated graded
S-module. Then

projdim M + depth M = n.

Proof We proceed by induction on the depth of M. If depthM = 0, then m is
associated with M and hence there exists m € M, m # 0 with mm = 0. It follows
that me; A -+ - A e, € Hy(X; M), so that H,(x; M) # 0. Thus projdim M = n, by
(2.2). Suppose now that depth M > 0. Then there exists a homogeneous polynomial
f € m which is a nonzerodivisor on M. As we noticed before, depth M/f M =
depth M — 1. Let FF be a graded minimal free resolution of M. Multiplication with f
yields a complex homomorphism F — F whose mapping cone G provides a graded
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minimal free resolution of M/f M, cf. [216, Section 1.5]. Note that G; = F;®F;_
for all i > 0. This implies that projdim M /f M = projdim M + 1. Applying the
induction hypothesis we obtain

projdim M + depth M = (projdim M/fM + 1) + (depth M/fM — 1)
= projdimM/fM + depth M/f M = n,

as desired. m|

Let M be a finitely generated graded Cohen—Macaulay S-module of dimension
d. The Auslander—-Buchsbaum theorem implies that projdimM = n — d. Let F
be the graded minimal free S-resolution of M. Then the rank of the free module
F,_4 is called the Cohen—Macaulay type of M, denoted r(M). It follows that
r(M) = dimg F,_4/mF,_4, and hence by (2.2), r(M) = dimg H,_4(x; M). In
particular, if dim M = 0 it follows that (M) = dimg H, (x; M). Since H,,(x; M)
is isomorphic to the socle y (M) of M, which by definition is the submodule of M
whose elements are all annihilated by m, we see that r (M) = dimg y (M) whenever
dimM = 0.

For later applications we need the following result and its corollaries.

Theorem 2.16 Let M be a finitely generated graded Cohen—Macaulay S-module.
Then M admits only one extremal Betti number.

Proof Let I be the graded minimal free resolution of M. Suppose that projdim M =
p, and that M has more than one extremal Betti number. Since one of the extremal
Betti numbers is always in homological degree p, there exists another extremal Betti
number in homological degree i < p. Let 8; ;1 ; (M) be this extremal Betti number,
andletey, ..., e, be ahomogeneous basis of F;. We may assume thatdege; = i+ .
Let 9,41 : Fix1 — F; be the (i 4 1)-differential in F. Since B; ;1 ;(M) is an
extremal Betti number of M, it follows that deg f < dege; for all homogeneous
basis elements f in Fjy. Thus, since 9;+ is a graded map and since Im(9;+1) C
mF;, it follows that for all basis elements f of F;y; we have

din1(f)= ) ae witha €. (2.3)
ej#el

Dualizing the resolution of M with respect to S and using the fact that M is
Cohen—-Macaulay, we get the acyclic complex F*, since Extg(M ,8) = 0 for
i < projdim(M), see [27, Proposition 3.3.3]. On the other hand, (2.3) implies that
97 1 (e]) = 0, while ef ¢ Im(3;") because Im(3]") C mF;". This contradicts the
acyclicity of F*. O

As an immediate consequence we have

Corollary 2.17 Let M be a finitely generated graded Cohen—Macaulay S-module
of projective dimension p. Then regM = max{j: Bppr;(M) # 0} and
Bp, ptreg M (M) is the unique extremal Betti number of M.
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Corollary 2.18 Let M be a finitely generated graded Cohen—Macaulay S-module
of dimension d and let Hy (1) = Q(1)/(1 — )¢ be its Hilbert series. Then

reg(M) = deg Q(1).

Proof Let B;; be the graded Betti numbers of M. Since M is Cohen—Macaulay, it
follows from the Auslander—Buchsbaum formula that projdim M = n —d. By using
the additivity of Hilbert series, we deduce that Hy;(t) = P(¢t)/(1 — t)", where

n—d

P(t)y=) (=" > Biijt' ™.
J

i=0

By Corollary 2.17, B,—d,n—d-+reg M is the unique extremal Betti number of M, and
hence deg P(t) = n —d 4+ regM. Since P(t) = (1 — )"~ Q(t), the assertion
follows.

A graded ring R = S/I is called a Cohen—Macaulay ring, if R as an S-module
is Cohen—Macaulay. Sometimes an ideal [ is called a Cohen—Macaulay ideal if S/1
is a Cohen—Macaulay ring. A Cohen—Macaulay ring R with 7(R) = 1 is called a
Gorenstein ring. Gorenstein rings are a very distinguished class of Cohen—Macaulay
rings. By a famous theorem of Bass [10], Gorenstein rings are characterized by
the property that they are of finite injective dimension considered as modules over
themselves.

The following result provides a comparison between S/I and S/in_ (7).

Theorem 2.19 Let I C S be a graded ideal, and let < be a monomial order on S.
Then the following holds:

(@) Bij(S/1) < Bij(S/in_(D) for all i and j;

(b) dimS/I = dimS/in.(I), depthS/in.(I) < depthS/I and regS/I <
reg S/inc(I);

(c) if S/in. (1) is Cohen—Macaulay, then S/I is Cohen—Macaulay, and r(S/I)
r(S/in_(1));

(d) if S/in. (1) is Gorenstein, then S/I is Gorenstein;

(e) if S/in<(I) has a linear resolution, then S/I has a linear resolution.

IA

Proof The proof of statement (a) can be found in [94, Corollary 3.3.3].

(b) The equality dim S/ = dim S/in. (/) follows from Proposition 2.6 and the
fact that the dimension of a graded S-module is the pole order of its Hilbert
series at t = 1. The inequality depth S/in. (/) < depth S/I follows from (a)
and the Auslander—-Buchsbaum theorem, while the reg S/I < reg S/in([) is
an immediate consequence of (a).

(c) If §/in. (1) is Cohen—Macaulay, then dim S/in_ (/) = depth S/ in- (). Thus
it follows from (b) that dim S/I > depth S/I. By Proposition 2.13, the opposite
inequality always holds, and this implies that S/I is Cohen—Macaulay. Since in
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this case S/I and S/ in. (/) have the same projective dimension, it follows from
(a) and the definition of the Cohen—Macaulay type that r(S/1) < r(S/in(I).

(d) If S/in.(I) is Gorenstein, then r(S/in<(I)) = 1. Thus (c) implies that
r(S/I) =1, and hence S/I is Gorenstein.

(e) Let a be the least degree of a generator of I, then this is also the least degree
of a generator of in_ (/). Since in_ (/) has a linear resolution it follows that
regin.(/) = a. Thus by (b), reg(/) < a. However reg(/) > a, always. Thus
reg I = a, and this implies that / has a linear resolution. O

Problems

2.18 Let M be a graded Cohen—Macaulay S-module of dimension d, and let f =
fi, ..., fabean M-sequence withdeg f; = a; fori =1, ..., d. Show that M /(f)M
has finite length and that e(M) = ¢(M/(£)M)/ ]_[fl:l a;, where £(M /(f) M) denotes
the length of M/(f)M.

2.19 Let S = K[x1, x2, x3, x4]. Show that S/(x1, x2)N(x3, x4) is unmixed but not
Cohen—Macaulay.

2.20 A graded ideal generated by a regular sequence of homogeneous polynomials
is called a complete intersection ideal. Show that if I C S is a complete intersection
ideal, then S/1 is Gorenstein.

2.21 Let I be the ideal in the polynomial ring K[x1, ..., X, ¥1, - - ., ¥n] generated
by the binomials x;y; — x;y; with1 <i < j < n.

(a) Show that the binomials generating / form a reduced Grobner basis with respect
to the reverse lexicographic order induced by x; > x2 > -+ > x, > y| > y» >
© > Yn-
(b) Use (a) and Theorem 2.19 to show that [ is a Cohen—Macaulay ideal with linear
resolution, and compute the type and the a-invariant of S/1.

2.22 Give examples of graded ideals for which the inequalities in Theorem 2.19 (b)
are strict.

2.23

(a) Show that the ideal I = (xy — 2, xY)isa complete intersection ideal.
(b) Let < be the lexicographic monomial order induced by x > y > z. Show that
in. (/) is not a complete intersection ideal, and not even a Gorenstein ideal.

224 let K be a field, S = K|[xy,...,x,] the polynomial ring over K in the
indeterminates xq,...,x,, and I C § an ideal. Let < be a monomial order on §
and suppose that x; is a nonzerodivisor on S/in_(I). Then x; is a nonzerodivisor
onS/I.
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2.4 Infinite Free Resolutions and Koszul Algebras

As in the previous sections, S = K[xi ..., x,] denotes the polynomial ring in the
variables xi, ..., x,. Any standard graded K-algebra R of embedding dimension
n is isomorphic to §/I where I is a graded ideal with I C (x, coxp)? Letm
be the graded maximal ideal of R. In general and in contrast to finitely generated
graded S-modules, the finitely generated graded R-modules do not have a finite
projective dimension. Indeed, Serre showed that if (R, m) is a Noetherian local ring,
then projdim R/m < oo if and only if R is regular. The same holds true in the
standard graded case considered here. Thus in our setting, the graded minimal free
R-resolution of R/m is infinite if and only if 7 # 0.
The Poincaré series of R is defined to be the formal power series

Pr(1) = ZTorf (R/m, R/m)t' € Z[[t]].

i=0

Let X be the graded minimal free R-resolution of R/m. Then ToriR (R/m, R/m) and
X;/mX; are isomorphic as graded K-vector spaces. In particular, the vector space
dimension of Torl.R (R/m, R/m) is equal to the rank of the free R-module X;.

It has been an open question for several years whether Pg(¢) is always a rational
function. A first counterexample was found by D. Anick [2]. However, there is a
class of standard graded K -algebras for which Pg(¢) is a rational function by rather
simple reasons.

Definition 2.20 A standard graded K-algebra is called Koszul if R/m has a linear
resolution, in other words, if Tor[R (R/m, R/m); = Oforalli and all j # i.

Koszul algebras were introduced by Priddy [171]. The simplest example of a
Koszul algebra is the polynomial ring S, since the Koszul complex K (x; S) provides
a linear resolution of S/m.

Proposition 2.21 Let R be a Koszul algebra. Then Pgr(t)Hilbgr(—t) = 1. In
particular, Pr(t) is a rational function.

Proof Let X be the graded minimal free resolution of R/m. By assumption X; =
R(=i)# for all i. Hence

1 = Hilbg/m(t)=Y (—1)" Hilbx, (t)= (—1)" ;' Hilbg(t) = Pg(—1) Hilbg (¢).

i>0 i>0

Thus the assertion follows. m]

Proposition 2.22 Let R be a standard graded K -algebra and £ € R| a nonzerodi-
visor. Then R is Koszul if and only if R /R is Koszul.

Proof Since ¢ is a nonzerodivisor on R it follows that Hilbg/r(1) = (1 —
1) Hilbg (). On the one hand, it is known [6, Proposition 3.3.5] that Pg/¢r(t) =
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Pr(t)/(141). Thus, Pg(t) Hilbg(—t) = 1 if and only if PR/ZR(I) Hile/gR(—l‘) =
1,. Now we use the fact, proved by C. Lofwall [140], that the statement of
Proposition 2.21 has a converse. In other words, a standard graded K-algebra A
is Koszul if and only if P4 (¢) Hilb4 (—¢) = 1. This yields the desired conclusion.

O

In general it is hard, and often impossible, to decide whether an algebra is Koszul
or not. However there are necessary and also sufficient conditions for Koszulness.
Let us begin with a necessary condition.

Proposition 2.23 Let R = S/I be a Koszul algebra with I C (x1, ..., xn)2. Then
[ is generated by polynomials of degree 2.

Proof We denote by f the residue class modulo / of a polynomial f € S. Then X

is a free module with basis e, ..., e, and 9: X1 — X9 = R is given by d(¢;) = X;
fori=1,...,n.
Let fi1, ..., fin be a minimal homogeneous system of generators of 7, and write

fi= Z?:l fijx;j with homogeneous polynomials f;;. Then obviously the elements
u; = 27:1 f_ijej in X1 belong to Kerd, and degu; = deg f; for all i. We claim
that the relations u1, ..., u, together with the relations r;; = x;e; — xje;, i < j
form a minimal system of generators of Ker d. From this it then follows that / must
be generated in degree 2, if R is Koszul.

In order to prove the claim let 27:1 gje; be an arbitrary element in Ker 3. Then
> i—18j%j = 0,and so 3 _; gjx; € I. Hence there exist &; € S such that
> i=18j%j = >/_y hi fi. It follows that

Zgjxj = Zhi(z fijxj) = Z(Z hi fij)xj.
j=1 ==l

j=1 i=1

Consequently, >7_;(g; — >_{L; hi fij)x; = 0. This implies that }i_,(g; —
> i=1 hi fij)ej is an element of the kernel of the map B'j_; Se; — (x1,...,xx)
with e; — xj for j =1, ..., n. Since the Koszul complex K (x; §) is acyclic this
kernel is generated by the elements sy; = xxe; — x7ex, k < [. Thus there exist
polynomials py; such that

n m
Z(gj - Zhifij)ej = ZPlekl.
j=1 i=1

k<l

Therefore, > _; gje; = DIt hiui + " _; Prirw- This shows that the elements
u; and ry; generate Ker 9.

Suppose that one of the elements u;, say uj, can be omitted in the above
generating set. Then there exist polynomials ¢; and gx in S such that u; =

m - -
> o qitti + ) i 8kitki, and hence
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n m n n
Y hjei— Y ai)_ fije) =Y gusu € @Ple;.
Jj=1 i=2  j=I 1

k<l j=
Substituting the ¢; by the x; we obtain that fi — > /", qifi € (x1,...,x:)1,
which by Nakayama’s lemma is impossible since fi, ..., f;, is a minimal system
of generators of /. O

In Chapter 4 an example is given which shows that this necessary condition is
not sufficient. Now we will give a sufficient condition.
According to Conca, Trung, and Valla [39], a Koszul filtration of R is a finite set
Z of ideals generated by linear forms such that
(i) me .F;
(ii) for any I € % with I # 0, there exists J € % with J C I such that I/J is
cyclicand J : [ € Z.

The next result illustrates the usefulness of Koszul filtrations.

Proposition 2.24 Assume R admits a Koszul filtration % . Then each ideal I € F
admits a linear resolution. In particular, R is Koszul.

Proof We prove by induction on i and by the number of generators of / that
Torl.R(R/m, I; =0forall I € # and j # i 4 1. Then, this implies that each
I € % has a linear resolution. By (i), m € .%. Therefore it will then follow that R
is Koszul.

For i = 0, the assertion is trivial since all / € .# are generated by linear forms.
Now let i > 0. Condition (ii) implies that I /J=(R/L)(—1) for some L € .%. Thus
we obtain a short exact sequence

0—>J—1— (R/L)(—1) — 0.

By using the fact that Torl-R (R/m, (R/L)(—1));= Torl-R_1 (R/m, L)j_y, forall j we
obtain the exact sequence

Torf(R/m, J); — TorX(R/m, I); — Tor® | (R/m, L);_;

Now TorlR_l(R/m, L)yj.y = 0 for j # i + 1, by induction on i, and
ToriR (R/m,J); = 0 for j # i + 1 by induction on the number of generators
of J. Thus the exact sequence yields that TorlR(R /m,I); =0forj #i+1,as
desired. O

Obviously, if .% is a Koszul filtration, then .# contains a flag of ideals
O=Ihyhchchc---Ccl,=m,

where I; € % forall j (and I;/1;_; is cyclic for all j). If it happens that for all j
there exists k such that I;, : I; = I, then {lo, I1, ..., I} is a Koszul filtration.
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Such Koszul filtrations are called Koszul flags. Conca, Rossi, and Valla showed [38,
Theorem 2.4] that if S/I has a Koszul flag, then I has a quadratic Grobner basis.
The following theorem is a partial converse of this result.

Theorem 2.25 Let I C S be a graded ideal which has a quadratic Grobner basis
with respect to the reverse lexicographic order induced by x1 > - - - > x,,. Then, for
all i, the colon ideals

Iy Xig1s ooy Xn) & Xi

are generated, modulo I, by linear forms.
For the proof of the theorem we need to recall the following result.

Lemma 2.26 Let & be the reduced Grobner basis of the graded ideal I C S with
respect to the reverse lexicographic order induced by x1 > - -- > x,. Then

G ={f e :xy [YVU{f/xn: [ €Y and x,|f}

is a Grobner basis of I : xy,.
The proof is similar to that of Proposition 1.40.

Proof (Proof of Theorem 2.25) Let 4 = {gi1,..., gn} be the reduced Grobner
basis of I with respect to the reverse lexicographic order and fix i < n. Let

fi = gjmod(x;11,...,x,), where f; € K[x1,...,x;] for all j. We may assume
that in.(g;) > --- > in<(gn), and therefore, there exists an s < m such that
fs #0and foy1 = --- = f = 0. In addition, we have in.(f;) = in.(g;) for
1 < j < s. It then follows that (7, xj4+1,...,X,) = (f1,..., fs, Xit1, ..., Xy) and
the set % = {f1,..., fs, Xit1, ..., X} is a Grobner basis, since

in<(15 Xitls ey x}’l) = (in<(I)7xl+1’ e 7xl1)7
see Problem 1.6. Moreover, .% is reduced, since ¢ is reduced. Let J = (f1, ..., fs)-
Then

Uy Xigts oo xn) txi = (X1, oo Xn) 2 xi = (Jioxi) + X1y - - - Xn).

By applying Lemma 2.26 for J N K [x1, ..., x;], it follows that, modulo J, (J : x;)
is generated by linear forms in K[xi, ..., x;] which implies that (1, xj41, ..., X,)
is also generated by linear forms modulo 1. O

A particular class of Koszul filtrations which naturally occur in combinatorial
contexts are the following: let R be a standard graded K -algebra and let the graded
maximal ideal m be minimally generated by the homogeneous elements uy, . . ., u,,.

We let .7 be the set of all ideals generated by the subsequences u;,, ..., u;; of
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ui, ..., un. Suppose that for each such subsequence, (u;,..., u,-H) Do is
generated by a subset of {uy, ..., u;}. Then, obviously, .% is a Koszul filtration.

A standard graded K-algebra, whose graded maximal ideal possesses a system
of generators satisfying these conditions, is called strongly Koszul. Of course, any
strongly Koszul algebra is also Koszul.

The simplest example of a strongly Koszul algebra is the polynomial ring itself
with generators xi, .. ., x, for the graded maximal ideal of S.

The following example of a strongly Koszul algebra is of great importance for
the further theory.

Proposition 2.27 Let I C S be generated by monomials of degree 2. Then R = S/1
is strongly Koszul.

Proof We denote by f the residue class modulo I of a polynomial f € S, and will
show that J = (x;;, ..., X;,_,) : X;; is generated by a subset of {xi, ..., X,}.

Let I be generated by the degree 2 monomials u1, ..., u,. Since I is a monomial
ideal, it follows that (x;,...,X; ;) : X; is generated by residue classes of
monomials. Let i # 0 be such a monomial. Then ux;, € (x;,, ..., X;_,).

Suppose first that ux;, = 0. Then there exists a monomial v € § such that
ux;, = vu; for some i. Since u # 0, it follows that x;, divides u;, say, u; = x; x;.
Then x; divides u and x; € J.

Next suppose ux;, # 0. Then there exists a monomial v such that ix;, = vX;;
for some j < k. Thus ux;, — vxi; € I Ifux;, — vXi; = 0, then Xi; divides u, and if
UXj, — VX;; # 0, then, since / is a monomial ideal, it follows that ux;, € I and we
are in the first case. O

This result has an important consequence.

Theorem 2.28 Let I C S be a graded ideal and suppose that there exists a
monomial order < on S such that in_(I) is generated by monomials of degree 2.
Then R = S/I is Koszul.

Proof We use the fact that the graded Betti numbers of K viewed as an S/I-module
are less than or equal to the corresponding graded Betti numbers of K viewed as an
S/ in (I)-module, see, for example, [60, Theorem 6.8]. Obviously this fact implies
that R = S/I is Koszul, if S/ in_ (/) is Koszul. Thus the desired conclusion follows
immediately from Proposition 2.27. O

Our discussions show that the following implications hold:
I has a quadratic Grobner basis = /[ is Koszul = [ is generated by quadrics.

None of these implication can be reversed.

Example 2.29 Let I be an ideal generated by quadrics given in Example 1.18.
Then K[x1, x2,...,x10]/1 is not Koszul. By using a specialized software (e.g.,
Macaulay?) one can check that 834(K) =1 # 0.
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Example 2.30 Letn = 8 and [ be the ideal of K [x1, x2, ..., xg] generated by

f1 =x2x8 — x4x7, f2 = X1X6 — X3X5, f3 = X1X3 — X2X4.

Then I has no quadratic Grobner basis and K[x1, x2, ..., xg]/I is Koszul. The
details will be explained in Example 4.28.

Let A be a standard graded K-algebra, and B C A a K-subalgebra generated by
elements of A of degree 1. Then B is standard graded as well. The algebra B is said
to be an algebra retract of A, if there exists a surjective K -algebra homomorphism
€: A — B such that the inclusion map B < A composed with € yields a K -algebra
isomorphism B — B. The map ¢ is called the retraction map of the algebra retract
B C A.

The following result can often be used as an inductive argument to prove
Koszulness.

Theorem 2.31 Let B C A be an algebra retract of standard graded K -algebras
with retraction map €. Then the following conditions are equivalent:

(i) A is Koszul;
(i) B is Koszul, and B viewed as an A-module via € admits an A-linear resolution.

Proof Let R be a standard graded K -algebra with graded maximal ideal m, and M
a finitely generated graded R-module generated in nonnegative degree. The formal
power series

PRl(s.1) = dimg Torf (R/m, M), s/t
ivj

in the variables s and ¢ is called the graded Poincaré series of M. Since for each i
there exist only finitely many j with TorlR (R/m, M); # 0, we can write

PRl(s,ty =Y pM (),

i>0
where each le (s) is a polynomial in s.
It has been shown in [91] that, since B C A is an algebra retract, the following
identity of formal power series holds:

PG, t) = PB(s, ) PK (s, 1).

Write Pf(s_,t) = YioPi®)t', PE(s,t) = Y 0qi()t" and PK(s,1) =
2 i=oTi(s)t'. Then

pi(i)=2qj(t)ri_j(t) forall i.

j=0
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Since the coefficients of the polynomials ¢; and r; are all nonnegative integers, it
follows that

deg p; (1) = max{degq;(t) +degri_;(t); j=0,...,i}.

From this equation both assertions of the theorem follow at once. O

We end our discussions on Koszulness in this chapter by relating the Koszul
property of S/1I to the finite graded free S-resolution of S/I.

Theorem 2.32 Let I C S be a graded ideal. Then

(a) Suppose I has a 2-linear resolution. Then S/1 is Koszul.
(b) Suppose that 1 is generated by quadrics and that 8,;(S/1) # 0 for some j > 4.
Then S/I is not Koszul.

Proof (a) The condition in (a) implies that all Massey operations vanish, so that S/
is a Golod ring. Therefore,

(1 +st)"

1+1—tp!

P, (s, 1) = s

For the details of this argument we refer to the survey article on infinite free
resolutions by Avramov in [6].
We use again that [ has a 2-linear resolution, and deduce that

P (s, =143 Bi(S/Ds 1,

i>1

sothat 1 +1 — 1Py (s,1) = 1 = Y,y Bi(S/Ds' 11+,

Now expanding the fraction which gives us PSS (s, 1), we see that Pslj (s, 1) 1s
a power series in the product st of the variables s and ¢, and this means that S/1 is
Koszul.

The proof of (b) needs some preparation and will be postponed. O

Let (R, m, K) be a Noetherian local ring or a standard graded K -algebra (in
which case we assume that m is the graded maximal ideal of R). Tate in his famous
paper [210] constructed an R-free resolution

X oo —X— - —X)— X — Xg—0,

of the residue class field R/m = K, that is, an acyclic complex of finitely
generated free R-modules X; with Hy(X) = K, admitting an additional structure,
namely the structure of a differential graded R-algebra. It was Gulliksen [86] and
independently Schoeller [187] who proved that if Tate’s construction is minimally
done, as explained below, then X is indeed a minimal free R-resolution of K. For
details we refer to the original paper of Tate and to a modern treatment of the theory
as given in [6].
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Here we sketch Tate’s construction as much as is needed to prove Theo-
rem 2.32(b). In Tate’s theory X is a DG-algebra, that is, a graded skew-symmetric
R-algebra with free R-modules X; as graded components and X¢o = R, equipped
with a differential d of degree —1 such that

d(ab) = d(a)b + (—1) ad(b) (2.4)

for a € X; and b € X. Moreover, (X, d) is an acyclic complex with Hy(X) = K.
The algebra X is constructed by adjunction of variables: given any DG-algebra
Y and a cycle z € Y;, then the DG-algebra Y/ = Y(T: dT = z) is obtained by
adjoining the variable T of degree i + 1 to Y in order to kill the cycle z.
If i is even we let

Y]/ = Yj@Yj—i—lT with T2 = 0and d(T) = Z.
If i is odd we let
Yi=X;@X; )T VX204 TP -

with T =1, 7D =7, 7OTY = (G + j)!/iljHTHD and d(TD) = 77D,
The T are called the divided powers of T. The degree of T\ is defined to be

jdegT.
The construction of X proceeds as follows: Say, m is minimally generated
by x1,...,x,. Then we adjoin to R (which is a DG-algebra concentrated in

homological degree 0) the variables Ty, ..., Ty, of degree 1 with d(Ty;) = x;.
The DG-algebra X O = R(T11, ..., T1,) so obtained is nothing but the Koszul
complex of the sequence x1, ..., x, with values in R. If X M s acyclic, then R is
regular and X = XD is the Tate resolution of K. Otherwise H; (X)) # 0 and
we choose cycles z1, . .., z,, whose homology classes form a K -basis of Hy(X1),
and we adjoin variables 731, ..., To, of degree 2 to X M with d(T»;) = z; to obtain
X@ Tt is then clear that H;(X®) = 0 for j = 1. Suppose X®) has been already
constructed with H; (X®) = 0 for Jj=1,...,k—1. We first observe that Hi(X®)
is annihilated by m. Indeed, let z be a cycle of X &), then x;z = d(T1;7), due to the
product rule (2.4). Now one chooses a K -basis of cycles representing the homology
classes of Hy (X)) and adjoins variables in degree k+ 1 to kill these cycles, thereby
obtaining X **1_ In this way one obtains a chain of DG-algebras

R=XOcxDcx@c...cx®c...,

which in the limit yields the Tate resolution X of K. It is clear that if R is standard
graded then in each step the representing cycles that need to be killed can be
chosen to be homogeneous, so that X becomes a graded minimal free R-resolution
of K if we assign to the variables T;; inductively the degree of the cycles they
do kill and apply the following rule: denote the internal degree (different from
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the homological degree) of a homogeneous element a of X by Deg(a). Then we
require that Deg T) = i Deg T for any variable of even homological degree and
furthermore Deg(ab) = Deg(a) + Deg(b) for any two homogeneous elements in X .

Proof (of Theorem 2.32(b)) The Koszul complex XV as a DG-algebra over S/1 is
generated by the variable 77; with d(T1;) = x; fori = 1,...,n. Thus Deg T1; = 1
for all i. Let f1, ..., fi be quadrics which minimally generate I, and write f; =
ZT:] fijxj with suitable linear forms f;;. Then H; (XM is minimally generated

by the homology classes of the cycles z; = Z’;’Zl fijThj. Let Tp; € X @ be

the variables of homological degree 2 with d(7»;) = z; fori = 1,...,m. Then
Deg T5; = Degz; = 2 for all i. To proceed in the construction of X we have to kill
the cycles wr, ..., w, whose homology classes form a K -basis of Ha(X®). Since

Tor; (K, S/1=H;(X(M), our hypothesis implies that there is a cycle z € (X)),
with Degz = j > 4 which is not a boundary. Of course z is also a cycle in X®
because X (1 is a subcomplex of X®). We claim that z is not a boundary in X To
see this we consider the exact sequence of complexes

0— xV — x@» - x@,x0 _ 0,
which induces the long exact sequence

D Hy (X x0) 2 mx Dy s Hy(X®)

Thus it suffices to show that the homology class [z] of the cycle z is not in the
image of §. Notice that the elements T1;T>; form a basis of the free S//-module
(X(z)/X(U)g and that the differential on X(z)/X(l) maps T1; 12 to x; T2, so that
w e (X®/xW)zis acycle if and only if w = 37, w;T; where each w; € Xil)
is a cycle. Now the connecting homomorphism é maps [w] to [— Z';’:l w;zjl.
It follows that Im§ = H;(XV)2. Since Hy(XV) is generated in degree 2 we
conclude that the subspace Hy (X U2 of Hy(XD) is generated in degree 4. Hence
our element [z] € Hy (X)) which is of degree > 4 cannot be in the image of §, as
desired.

Thus the homology class of z, viewed as an element of H(X®) has to be killed
by adjoining a variable of degree j > 4. This shows that ﬂgg j/ ! (S/m) # 0, and hence
S/1 is not Koszul. O

Problems

225 Let I C Kl[x1,...,X5,Y1,...,Y5] be the ideal generated by xjy» —

X2V1, X2Y3 — X3Y2, X3V4 — X4Y3, X4Y5 — X5Y4, X1Y5 — X5y1. By using Theorem 2.32,
show that S/1 is not Koszul.
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2.26 Let I C S be an ideal generated by a regular sequence of quadrics. Show that
S/1 is Koszul.

2.27 Let I be the ideal given in Problem 2.21. Show that R = §/I is Koszul and
compute the Poincaré series Pg(t) of R.

2.28 Let R be the toric ring generated over K by all monomials of S of degree 2.
Show that R is strongly Koszul.

2.29 Let Ry and R; be standard graded K -algebras, and set R = R1®g R>. Then
Pr(t) = Pg,(t)Pg, (), and R is Koszul if and only if R| and R, are Koszul.

Notes

The books of Bruns—Herzog [27] and Eisenbud [57] may help to deepen the
understanding of the concepts and results discussed in this chapter. A systematic
introduction to Cohen—Macaulay and Gorenstein rings is given in [27]. There, one
can also find (see [27, Definition 3.1.18 and Theorem 3.2.10]) the proof of the
theorem of Bass [10] according to which a Cohen—Macaulay ring R is Gorenstein
if and only if R, viewed as module over itself, has finite injective dimension.

Koszul algebras were first introduced by Priddy [171]. Froberg [75] showed
that S/1 is Koszul if I is generated by monomials of degree 2. This result leads
to the important conclusion that algebras, whose defining ideal admits a quadratic
Grobner basis, are Koszul. In [98] strongly Koszul algebras were introduced. This
concept inspired Conca, Trung, and Valla [39] to introduce the more flexible notion
of Koszul filtrations. From that paper, Proposition 2.24 is adopted. It provides a
sufficient condition of Koszulness in terms of Koszul filtrations. The short proof for
Proposition 2.22 is due to Backelin and Froberg [7]. The proof of Proposition 2.23,
in which it is shown that the defining ideal of a Koszul algebra is generated by
quadrics, reproduces the proof given in [60, Proposition 6.3]. Theorem 2.31 is taken
from [156, Proposition 1.4], while Theorem 2.32(b) is Lemma 1.2 of [61].

A nice survey on Koszul algebras is given in [76].
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Chapter 3 )
Introduction to Binomial Ideals Ghock or

Abstract In this chapter we introduce the main topic of this book: binomials
and binomial ideals. Special attention is given to toric ideals. These are binomial
ideals arising from an integer matrix which represents the exponent vectors of the
monomial generators of a toric ring. It will be shown that the toric ideal 14 attached
to the matrix A is graded if and only if A is a configuration matrix. Furthermore, it
will be shown that an arbitrary binomial ideal is a toric ideal if and only if it is a
prime ideal. Then we study the Grobner basis of a binomial ideal and show that its
reduced Grobner basis consists of binomials. We introduce Graver bases and show
that the reduced Grobner basis of a binomial ideal is contained in its Graver basis.
Naturally attached to a lattice L C Z" (i.e. a subgroup of the abelian group Z") there
is a binomial ideal I}, called the lattice ideal of L. It will be shown that the saturation
of any binomial ideal is a lattice ideal, and that the lattice ideals are exactly those
which are saturated. The ideal generated by the binomials corresponding to the basis
vectors of a basis of the lattice L is called a lattice basis ideal. Its saturation is the
lattice ideal I;. The chapter closes with an introduction to Lawrence ideals and to
squarefree divisor complexes.

3.1 Toric Ideals and Binomial Ideals

Grobner bases of toric ideals play an important role in algebraic statistics and in the
study of convex polytopes. In this section we introduce toric and binomial ideals
and discuss some of their basic properties.

Let K be a field. We denote by S = K[x1, ..., x,] the polynomial ring in the
variables x1, ..., x,. A binomial belonging to S is a polynomial of the form u — v,
where # and v are monomials in S. A binomial ideal is an ideal of S generated
by binomials. Any binomial ideal is generated by a finite number of binomials.
Indeed, let I be a binomial ideal. Since S is Noetherian, / admits a finite number
of generators. Each of these generators is a linear combination of a finite number of
binomials. Thus the finitely many binomials appearing in these linear combinations
generate I. More generally, some authors call an expression u — Av a binomial,
with A € K and u and v monomials. For this definition monomials become also
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binomials, since A = 0 is not excluded. This more general concept of binomials is
required to get a satisfactory theory for primary decompositions of binomial ideals,
see Eisenbud and Sturmfels [58]. Since primary decompositions of a binomial ideal
may depend on the base field, Kahle and Miller [123] developed the theory of
mesoprimary decompositions of binomial ideals.

An important class of binomial ideals are the so-called foric ideals. In order to
define toric ideals we let A = (a;;) 1<izd be a d x n-matrix of integers and let

<j=n

alj

aay

be the column vectors of A. We write Z4*" for the set of d x n-matrices A =
(ajj) 1=iza with each a;; € Z.

I<j=n

As usual a-b = Z?:l a;ib; denotes the inner product of the vectors a =
(ai,...,aq) andb = (by, ..., by)". Here ¢’ denotes transpose of a vector c.
A matrix A = (a;j) 1=iza € 7% is called a configuration matrix (or simply a

I<j=n

configuration) if there exists ¢ € Q7 such that

aj-c=1, 1<j<n.

For example, A = <(1) ; ?) is a configuration matrix, while (a1, ..., a,) € Z'*" is

a configuration matrix if and only ifa; = ap = --- = a, # 0.
Now let T = K[tlil, ...,tj[]] be the Laurent polynomial ring over K in the
variables 71, ..., 1z, and let A € Z4*" with column vectors a j- We define a K-

algebra homomorphism
n:S—T with xj— tY. (3.1)

The image of 7 is the K-subalgebra K[t?!, ..., t*] of T, denoted K[A]. We call
K[A] the toric ring of A. For the configuration matrix A of the above example we
have K[A] = K[, 13, t?1].

The kernel of 7 is denoted by 74 and is called the foric ideal of A.In our example,
we have 14 = (x1x2 — x32).

Proposition 3.1 Let A € Z4*". Then dim K[A] = rank A.

Proof Let K(A) be the quotient field of K[A]. Then the Krull dimension of K[A]
is equal to the transcendence degree trdeg(K (A)/K) of K(A) over K, see [27,
Theorem A.16]. Let G C Z< be the subgroup of Z¢ generated by the column vectors
of A. Then G is a free abelian group with rank A = rank G. Let by, ..., b,, be a
Z-basis of integer vectors of G. Then m = rank A and K (A) = K(t"1, ... tPn).
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The desired result will follow once we have shown that the elements tP!, . .., tPm
are algebraically independent over K. To see this, let F € K[y1,...,yn] be a
polynomial with F(tP', ..., t") = 0. Say, F = )" acy® with ac € K. Then

0= Zactclbl+"'+0;;1bm .

c

Since the vectors by, .. ., b, are linearly independent it follows that the monomials
teibi+cmbn are pairwise distinct. This implies that F = 0. O

Given a column vector

by
belonging to Z", we introduce the binomial f}, € S defined by

_ b; —bj
fo= 1" =T1%""

b;i>0 bj<0
N — _ . . .
Note that fy, = xP" — xP" where bt and b~ are vectors in Z" with entries

bi, ifb; >0 _ [0, ifb; >0
e d by ={" L
i {0, ifp; <0, ¢ {—bi, if b < 0.

Note that if f is any binomial in S, then f = uf}, for a unique b € Z" and a unique
monomial u.

For example, if b = (1, —1, 0, 2), then f;, = xle —xpandif b = (1,2, 3, 1),
then fi, = x1x3x3x4 — 1, while if £ = x?xy — x1x3x3x4, then f = x1x2 fp, with
b=(1,-1,-3,-1).

Theorem 3.2 Any toric ideal is a binomial ideal. More precisely, let A € 73",
Then 14 is generated by the binomials fy, withb € Z" and Ab = 0.

Proof We first show that I is a binomial ideal. Let f € Kerw with f = )", A,u,
Ay € K and each u a monomial in S. We write f = ) . f ©, where f© =
Zu’ 7(u)=te \uu—the sum taken over those monomials u which appear in f.

It follows that

O=n()=) 7(fN=3C Y} Wt

u, w(u)=t¢

and hence ), x()=te A = 0 for all ¢. Thus if £© £ 0and u € supp(f©), then
f(c) = Zvesupp(f@) Ay(V —u).
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Finally, let f;, € S. Then 7w ( fp) = tAb" _ ¢4b” Hence fb € Kerm if and only if
Abt = Ab~, and this is the case if and only if Ab = 0. m]

Proposition 3.3 Let A € Z4*". The following conditions are equivalent:

(i) A is a configuration matrix;
(ii) forallb = (b1, ..., b,)" € Z" with Ab = 0 we have Z?:l bi =0;
(iii) 14 is a graded ideal.

Proof (i) = (ii): There exists ¢ € Qd such that /A = (1,...,1). Now let
b= (by,...,b,)" € Z" with Ab = 0. Then

O=c'(Ab) = Ab=(.....)01.....b)" =Y b

i=1

(i) = (i): Let U C Q" be the Q-subspace of Q" generated by the row vectors of A,
and let V C Q" the Q-subspace generated by U and (1,...,1). Then U C V and
(i1) implies that U L = vL, where fora Q-subspace W of Q" we denote by W+ the
Q-subspace of Q" consisting of all vectors v € Q" withw-v=0forallwe W. It
follows that

U=UhHt=wht=v,

since U and V are finitely generated vector spaces. Hence (1,..., 1) is a linear
combination of the row vectors of A. This implies (i).

(il) <= (iii): By Theorem 3.2, the binomials f, with Ab = 0 generate /4. Thus
14 is graded if and only if all f;, are homogeneous. This is the case if and only if
Y 'y bi =0forall bwith Ab = 0. O

It is clear that any toric ideal is a prime ideal. Theorem 3.2 has the following
converse.

Theorem 3.4 Let I C S be a binomial prime ideal. Then I is a toric ideal.

Proof Let fp and f; be two binomials. Then

fofe=tfore — X" fo—x° fi (3.2)

for some monomial . By using that / is a prime ideal, it follows from (3.2) that if
Jb, fe € I, then fpic € I, and of course also f_y, € I, since f_yp = — fp. Thus if
L C Z" consists of all b € Z" with f;, € I, then L C Z" is a subgroup of Z".

We claim that Z" /L is torsionfree. Indeed, let b € L with mb € L for some
integer m > 1. We have to show thatb € L. We have that f,,,;, € I.If char(K) = 0,
then we decompose fup = fpg, where g = x(m=Db" 4 xm=2bTyb™ 4 4
xP " x(m=2)b" + xm=Db™ ¢ g By using the substitutions x; — 1fori =1,...,n,
we easily see that g ¢ I since all binomials vanish on this substitution. Therefore,
Jfb € 1, since [ is a prime ideal. This implies thatb € L.
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If char(K) = p > 0, then we write m = p®m’ where e > 0, m’ > 1 are integers

such that p does not divide m’. In this case we decompose f,p as flf) g’ where
ht

g =P )’”L1 +-- -+(prb_)le € S. By using again the substitutions x; — 1

fori =1,...,n, we get g’ & I. Since I is a prime ideal, it follows that flfg el,
whence fp € I. This implies thatb € L.
The desired conclusion follows from Theorem 3.17. O

Let I be the binomial ideal generated by x> — y? in K[x, y]. Then [ is not a
prime ideal, because x2 - y2 = (x + y)(x — y), and if char(K) = 2 it is not even a
radical ideal, because in this case x> — y> = (x — y).

The next result shows how the toric ideal of a matrix A € Z¢*" can be computed
by elimination theory.

Let A = (aj, a, ...,a,) € Z¥" and let

SIE = Kxp, xo, oy, 57 570 1
be the polynomial ring in n + d variables and define the ideal J4 of S[t*!] by

Jo=(x1 =1, xp — 22, ..., x, — t?),

Proposition 3.5 The toric ideal 14 C S of A is equal to the intersection of the ideal
Ja C S[EE T with S, i.e.,

Ip=JaNS.

Proof If a polynomial f = f(x1,x2,...,x,) € S belongs to 14, then w(f) = 0.
Thus f(t?, t*, ..., t*) = 0. Therefore the Taylor expansion of

f((xl - tal) +ta]’ (x2 - taz) + ta29 ceey (xn - tan) +t3n)

with respect to y; = x; — t% fori = 1,...,n yields that f € J4 N S. Hence
Iy CJanS.

On the other hand, if a polynomial f = f(x1,x2,...,x,) € S belongs to J4,
then there exist elements g1, g2, .. ., g» belonging to S[t*!] such that

FX) =g1x, t)(x; — ) + -+ - + gu(x, t) (x, — t*).

Then(f) = f(t?,t%2,...,t*) = 0. Thus f € I4. Hence J4 NS C I4. O

By using Grobner bases we can compute elimination as described in Section 1.4.
Applied to the present case and assuming that all entries of A are nonnegative
integers we proceed as follows: let <purelex denote the pure lexicographic order on
S[t] induced by

nNH>mn>:--->1l3>X1>X2>--> Xy,
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and compute the reduced Grobner basis & of J4 with respect to <purelex. Corol-
lary 1.35 then guarantees that ¢ N S is the reduced Gribner basis of 74 with respect
to <purelex- In particular, & N S is a system of generators of /4.

We come back to our example A = ((1) ; ?) Then

3.2 2
Ja = (1 —t1,x — 1715, x3 — t{12).

Computing the Groébner basis of J4 with respect to the lexicographic order induced
by 1 > tp > x1 > x3 > x3 we obtain: xjxp — x%, t2x33 — x%, thX1X3 — X2, t2x12 —
x3,t —x1. Thus I4 = (x1x2 — x32), as observed before.

Problems

3.1 Show that

is a configuration matrix.
3.2 Let A € Z4*" Then I, is a principal ideal if and only if rank A = n — 1.
3.3 Let A = (3,4,5) € Z3. Compute 1.

34 LetI C K[x1,-..,%4,1,---,Yn] be the ideal generated by a set . of 2-
x1 ... xn
Y Yn
only if . is the set of all 2-minors of X.

3.5 Letchar(K) =0andletb € Z". Then I = (f},) C S is aradical ideal. In other
words, if g € S and g* € I for some k, then g € 1.

minors of the 2 X n-matrix X = ( ) Show that [ is a prime ideal if and

3.6 Letby,..., b, € Z" be Q-linearly independent vectors. Then fp,, ..., fb, isa
regular sequence.

3.2 Grobner Bases of Binomial Ideals

Grobner bases of binomial ideals have many applications in combinatorics and
algebraic statistics. One of the nice properties is that reduced Grébner bases of
binomial ideals consist again of binomials.
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Theorem 3.6 Let I be a binomial ideal of S. Then the reduced Grobner basis of 1
with respect to an arbitrary monomial order on S consists of binomials.

Proof In general, if f and g are binomials, then their S-polynomial S(f, g) is again
a binomial. It then follows from the argument done in the proof of Theorem 1.20
that a remainder of a binomial with respect to a set of binomials can be chosen as
a binomial, see Problem 3.7. Thus, applying Buchberger’s algorithm to a system of
generators of a binomial ideal I consisting of a finite number of binomials, we obtain
a minimal Grobner basis 4 = {g1, g2, ..., g} of I, where each g; is a binomial.
Let gi = u; — v;, where u; and v; are monomials with u; = in-(g;). Recall
that & is reduced if v; cannot be divided by u; for i # j. Suppose that ¢ is not
reduced and, say, vy is divided by u;. Let v, = wu;, where w is a monomial.
We then replace g» with g5 = g + wgi = wup — v}, where v, = wv;. Then
{g1, gé, g3, ..., &s} is a minimal Grobner basis of I consisting of binomials with
vé < v, since v; < up. Thus, after a finite number of steps, we obtain a reduced
Grobner basis of I consisting of binomials. O

There is no analogue of Theorem 3.6 for ideals generated by polynomials with
more than two terms. For example, the ideal I = (x1 + x2 + x3, X1 + x4 + X5)
has the reduced Grobner basis x1 + x4 + x5, X2 + X3 — x4 — x5 with respect to the
reverse lexicographic order induced by x; > x» > --- > xs5. Though all generators
of I only admit three terms, a polynomial with four terms belongs to the reduced
Grobner basis of 1.

Binomials in a binomial ideal can be written as linear combinations of the
binomial generators with coefficients which are monomials with scalars belonging
to Z1g . Indeed, we have

Lemma3.7 Let I C K|[x1,...,x,] be an ideal generated by the binomials
fis ..., fr. Let x* —X" be a binomial belonging to 1. Then there exists an expression

s
X -x' =) ™ fi
k=1

where 7, € Z1g, Wi EZ’;O, and 1 <iy <rfork=1,2,...,s.

Proof Let ¢ = {f1,..., fr} (r < r’) be a Grobner basis of I with respect
to a given monomial order <, obtained by applying Buchberger’s algorithm to
{f1,..., fr}. The Grobner basis ¢ may not be reduced. By the argument in the
proof of Theorem 3.6, ¢ consists of binomials. Let f; = x% —x¥ (1 <i < r').
We may assume that in.(f;) = x%™, since we can replace f; with — f; if needed.
We will show that f; (r < i < r’) has a presentation as stated in the lemma. Let

r < j < r’. Suppose that fi,..., fj—1 have such a presentation, and that f; is a
remainder of the S-polynomial g = S(f, fu) (1 < u < v < j — 1) with respect
to f1,..., fj—1. Then, g = xf, — xbf,, for some a,b € Z’;O. Moreover, since

fi...., fj—1, and g are binomials, it follows from the proof of Theorem 1.20, that
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t
/
X=Xy =3xS+ i

=1

wherelSjgfj—l,deZande,EZ’;Oforﬁzl,Z...,t.Thus,

t
b /
i =X fu =X fy = D x™

=1

has the desired presentation.

Now let f = x" — x¥ € I be arbitrary and suppose that f does not have the
desired presentation, and that in (x" —x¥) = x" is minimal among such binomials.
Since ¢ is a Grobner basis, there ex1sts a binomial f; (1 <i < r’) such that 1n<( f,
divides in- (f). Then, f =xVfi +x" — x" for some w,u’ € Z w1thx < x"

We may assume that x* — x¥ = 0. Since x¥ —x" € I satisfies 1n<(x —x') < x“,
by the assumption for f, the binomial x* — x¥ has the desired presentation. Thus,
f has the desired presentation as well, a contradiction. m]

The preceding lemma can be improved as follows.

Lemma3.8 Let I C K[x1,...,x,] be an ideal generated by the binomials
fiy .., fr. Let X" —X" be a binomial belonging to 1. Then, there exists an expression

S
W,
= Zekx kﬁk,
k=1

where €, € {x1}, wi € Z>0, and 1 < iy <rfork = 1,2,...,s, and where
X" fi, # X% qﬁqforalll§p<q§s.

Proof By Lemma 3.7, there exists an expression

K
v E : W,
= kX kfi/{v
k=1

where z; € Z, wy € Z’;O, and1 <i; <rfork=1,2,...,s. Then we can rewrite
it as

t
v Z(Xaj _ Xb-j),

j=1

where each x% — xP

such that

J coincides with ex"* f;, for some € € {1}and 1 < k <

u=a;, by=a, bp=a;, ..., b1 =a, b=v.
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Suppose that x* — xP» = x% — xP for some 1 < p < ¢ < t. Then we have a
sequence

bpri =api2, bppo=api3, ..., b1 =ag, by =b, =a,.

Hence we have

q
Z (x* —xPi) =0.

Jj=p+1

Thus we have another expression

14 t
X' —x' = Z(Xaf —xPi) + Z (x% — xPi).
j=1

Jj=q+1
By repeating the same argument, we obtain the desired presentation. |

Corollary 3.9 Let K be a field, and let f1, ..., fs be any set of binomial generators
of the binomial ideal I C K|xi,...,x,]. Let L be any other field, and let J C
L[x1, ..., x,] be the ideal generated by all binomials of 1. Then fi, ..., fs is as
well a system of generators of J.

Given a subset of vectors & C Z™, one defines G z to be the graph with the
vertex set ZZ, such that two vertices a and ¢ are adjacentin G» if a—¢ € :%. The
vectors a and ¢ are said to be connected via 4 if they belong to the same connected

component of G g. This is the case if and only if there exist uy, ..., u;y € % such
thata+wuy +---+w; € ZLyfori =1,...,kande =a+u; +--- +w.

The binomial ideal /4 in the polynomial ring S = K[xq, ..., x;;] is defined to
be the ideal

Iz=x" —x* :be ).

Corollary 3.10 Leta,b € ZZ,. Then a and b are connected via %, if and only if
x2 —xP e I

Proof Suppose first that a and b are connected via 2. Then there existuy, ..., u; €
+2% such that

atu +u+---+u EZZO forall i=1,...,k,
and

b=a+u +uy+---+u.
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We show by induction on k that x* — x? € I4. Ifk=1,thenb=a+u; € ngo
This implies that u; < b, componentwise. Let¢ =a—u| . Thenc¢ = b—u;r S Z’;‘O,
and hence -

b

- +
X —x° =x(x" —x") € I4.

Now suppose k > 1 and that the assertion is true for i < k. Since a + u; and b are
connected via k — 1 edges of G 5, our induction hypothesis implies that 241 —xP ¢
14, and this implies that

x? — Xb — (Xa _ Xa—',—ul) + (Xa+u1 _ Xb) € Ily.

Conversely, suppose that x* — xP € 1. Then Lemma 3.7 implies that there exist
uy,...,u € =% and monomials x% such that

t
x? —xP = Zxci (X“iJr —x%).
i=1

We show by induction on 7 that a is connected to b via 2. If r = 1, then x® —xP =
+ = _
x (x"1 — x"1 ). Therefore, a = ¢; + uf and b = ¢; +u, so that

a—u =c +u =bh,

which means that a and b are connected V+ia 2. Now lett > 1. Then there exists an
integer i, say i = 1, such that x® = x®1™% It follows that

t
_ - _
xCtu _xb E X% (x% — x% ).
—

Hence, our induction hypothesis implies that ¢; + u;” and b are connected via 2.
Since a and ¢; + u| are connected via A, the desired conclusion follows. m]

Theorem 3.11 Let I be a binomial ideal of S and {g1, ..., gs} a set of nonzero
binomials in I. Then, {g1,...,8gs} is a Grobner basis of I with respect to a
monomial order <, if and only if for all binomials 0 # u — v € I either u or v
belongs to (in~(g1), ..., in-(gs)).

Proof Let f =u —v € I. Thenin_(f) € in<(I). Since in-(f) is equal to u or to
v, it follows that either u or v belongs to in- (7). Thus, if both # and v do not belong

to (in<(g1), ..., in<(gs)), then this ideal cannot be equal to in_ (7).
On the other hand, suppose that {g1, ..., g5} is not a Grobner basis of I. Let
{gi, R gt’} be the reduced Grobner basis of 1 with respect to <. Since {g1, ..., g}

is not a Grobner basis of I, we have



3.2 Grobner Bases of Binomial Ideals 71

inc(I) = (in<(g}), ..., in<(gy)) 2 (in<(g1), ..., in<(g)).

Hence there exists 1 < i < t such that in<(g;) does not belong to
(in<(g1), ...,in.(gs)). By Theorem 3.6, g is a binomial. Let g; = u — v with
in.(g;) = u. Since {g},..., g} is reduced, the monomial v does not belong to
inc(I) D (in<(g1),...,in<(gs)). Thus none of the monomials ¥ and v in the
binomial g; € I belong to (in-(g1), ..., in-(gy)). |

Let I be a binomial ideal of K[x] = K|[x1, x2, ..., X;]. A nonzero binomial
f =u — v € [ is called primitive, if there is no nonzero binomial g = u’ — v € I
with g # f such that u’|u and v’|v. The set of all primitive binomials of I is called
the Graver basis of 1.

Proposition 3.12 Let I be a binomial ideal. Then the Graver basis of I is finite.

Proof Let .# be the set of all monomials x*y” and xy? such that x® — x” belongs
to the Graver basis of /. By the definition of primitive binomials, there are no
divisibility relations among distinct elements of .. Hence, by Dickson’s Lemma,
. is finite. Thus the Graver basis is finite. O

Theorem 3.13 Let I be a binomial ideal and 9 its reduced Grobner basis with
respect to a given monomial order. Then any binomial f € ¥ is a primitive
binomial.

Proof Suppose that the binomial f = u — v belongs to the reduced Grobner basis
% of I with respect to the given monomial order <, and that the initial monomial of
f is u. Suppose that f is not primitive. Then there exists a binomial g = u’ — v’ € I
with g # f such that u'|u and v'|v. If the initial term of g is v/, then it contradicts the
hypothesis that ¢ is reduced. Hence, the initial term of g is u’. Since the binomial f
belongs to the reduced Grobner basis, its initial monomial u belongs to a minimal set
of generators of in_ (I). Thus, we have u = u’. Then, g — f = v — v’ is a binomial
belonging to 1. Since v’ divides v and v # v/, it follows that in.(f — g) = v,
contradicting the assumption that ¢ is a reduced Grobner basis. O

Consider the binomial ideal / = (x2 — yz, x — y). The binomial x2 — yz is a
minimal generator of / but is not primitive. Hence by the previous theorem it cannot
belong to any reduced Grobner basis of /. For example, if we compute the reduced
Grobner basis of 1 with respect to the lexicographic order induced by x > y > z,
we obtain y2 — yz, x — y (which in this case is also a minimal set of generators).

Corollary 3.14 The reduced Grobner basis of a binomial ideal is contained in its
Graver basis.

Recall that the union of the reduced Grobner bases with respect to all possible
monomial orders is finite (Corollary 1.42) and called the universal Grébner basis of
I. Corollary 3.14 says that the universal Grobner basis of [ is a subset of the Graver
basis of /. Since the Graver basis of a binomial ideal is finite, we have another proof
for the fact that the universal Grobner basis is finite.
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For the case of graded toric ideals, the Graver basis contains another important
set of binomials.

Proposition 3.15 Let A € Z%*" be a configuration. Then any minimal set of
binomial generators of 14 is contained in its Graver basis.

Proof By Proposition 3.3, 14 is a graded ideal. Suppose that a binomial generator
f = u—v of I is not primitive. Then there exists a nonzero binomial g = u’' —v’ €
I4 with g # f such that u’|u and v'|v. Let u” = u/u’ and v/ = v/v’, and set
h =u" —v". Then f = u”g + v'h. Since f and g belong to I, it follows that
v'h € Iy, and since I, is a prime ideal and v’ ¢ I4 we see that i € I,4. Since
deg(g), deg(h) < deg(f), we conclude that f is not a minimal generator of I4, a
contradiction. O

In Proposition 3.15, we cannot omit the hypothesis that 14 is graded. For
example, if A = (1, —1) € Z'2 then Iy = (x1x2 — 1) = (x%x% - l,xf’xg —1).
However, this minimal set of binomial generators {xlzx% -1, xfxg — 1} consists of
nonprimitive binomials.

Problems

3.7 Let f be a binomial and {gy, ..., gs} a set of binomials.

(a) Show that a remainder of f with respect to {g1, ..., g} is a binomial if it is
obtained by the procedure given in the proof of Theorem 1.19.

(b) Give an example for which a remainder of f with respect to {g1,..., g} is

not a binomial. (Hint: Consider for example the binomials f = xjx> — x3x4,
g1 = X1X2 —X5X6, g2 = X1X2 —Xx7xg and consider a lexicographic order induced
by x; > --+ > x3g.)

3.8 Let I be a binomial ideal.

(a) Does any system of binomial generators of / contain at least one primitive
binomial?
(b) Show that I can be (minimally) generated by primitive binomials.

39
(a) Letl, C K[x1,.--,Xn, Y1, ---, Yn] be the ideal generated by the set .% of all
). Show that . is a reduced

X1 - Xp
y] e yn
Grobner basis of [, with respecttox; > «-- > x, > y1 > -+ > y,.

(b) Show that the minors generating I3 form a Graver basis of I3.

3.10 Let A = (3,4, 5) € Z'3. Compute the Graver basis of I4.

2-minors of the 2 x n-matrix X = <
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3.3 Lattice Ideals and Lattice Basis Ideals

In this section we give another interpretation of toric ideals. A subgroup L of Z"
is called a lattice. Recall from basic algebra that L is a free abelian group of rank
m < n. The binomial ideal I; C § generated by the binomials f, with b € L is
called the lattice ideal of L.

Consider for example, the lattice L C Z> with basis (1, 1, 1)’, (1, 0, —1)*. Then
b € L if and only if Ab = 0, where A = (1, —2, 1). Thus in this case we have that
I;, is a toric ideal, namely /4. On the other hand, any toric ideal is a lattice ideal.
Indeed, we have

Proposition 3.16 Ler A € 79%" Then the toric ideal 14 is equal to the lattice ideal
I;, where L = {b: Ab = 0}.

Proof By Theorem 3.2 we know that I4 is generated by the binomials f, with
Ab = 0. O

Not all lattice ideals are toric ideals. The simplest such example is the ideal I,
for L = 27 C Z.Here I}, = (x2 — 1). If I;, would be a toric ideal it would be a
prime ideal. But x2—1=(x+1)(x—1),andso I isnot a prime ideal.

We have the following general result:

Theorem 3.17 Let L C Z" be a lattice. The following conditions are equivalent:

(i) the abelian group 7" | L is torsionfree;
(i) I is a prime ideal;

The equivalent conditions hold, if and only if 11 is a toric ideal.

Proof (i) = (ii): Since Z" /L is torsionfree, there exists an embedding Z" /L C z4
for some d. Let eq, ..., e, be the canonical basis of Z". Then fori = 1,...,n,
e; + L is mapped to a; € Z4 via this embedding. It follows that Z?:l b;a; = 0if
and only if b = (b1, ..., b,)" € L. In other words, b € L if and only if Ab = 0,
where A is the matrix whose column vectors are ay, . . ., a,. Therefore, Theorem 3.2
implies that Iy, is the toric ideal of A, and hence a prime ideal.

(i1) = (i) is already shown in the proof of Theorem 3.4.

In the proof of (i) = (ii) we have seen that Iy is a toric ideal if Z"/L is
torsionfree. |

Let I and J be two ideals. The saturation of I with respect to J is the ideal
I : J™, where by definition I : J® = |J, (I : J%).

Proposition 3.18 Let I C S be a binomial ideal. Then I : ([]/_, x;)* is also a
binomial ideal.
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Proof We setx = [];_, x;. Then

I ([ [x0)™ =185, (3.3)
i=1

see Problem 3.15. Here SX denotes the localization with respect to the multiplica-
tively closed set {1, x, x2, ...} consisting of the powers of x.

Consider the polyn0m1al ring T = K[x1,...,%,¥1,...,Yn] over K in
the variables x1, ..., x5, ¥1,..., Y. Then T/(x1y1 — 1, ..., xpyn — 1)=S,, and
hence T/(I,x1y1 — 1, ..., xpyn — )T=Sy/ISy. Therefore, IS:NS = (I, x1y; —
1, ..., xpyn — l)TﬂS. By Corollary 1.35, Theorem 3.2, and Theorem 3.6 it follows

that I ([T72; xi)® is a binomial ideal. O
Theorem 3.19 Let I C S be a binomial ideal. Then I : ([i_, x;)* is a lattice
ideal.

Proof Let

L=1{beZ": ufy € I for some monomial u}.

We claim that L C Z" is a lattice. Indeed, if b € L, then uf, € I for some monomial
u and hence uf_y, = —ufy € I. This shows that —b € L. Now let ¢ € L be another
vector. Then there exists a monomial v such that vfe € I. By using Formula (3.2)
we get

Wfo) Wfe) = uv(Whhre =X fe—x fio) = uvwfiye —x* u(fe) = x° v(ufp).

It follows from this equation that b 4 ¢ € L. This proves the claim.

Next we claim that 7 : (]_[;-’=1 x;)°° = I. By the definition of L it follows that
Ip C I : ([1/2; x)°°. This implies that I, : ([T'_; x)® C I : ([T/=; x)>°. On
the other hand, since I C Iz, it follows that 7 : ([T/_; x))*®° C I : ([T/=; x)°°,
and hence we conclude that I ([T x)% = I : ([172; x)°°. Thus it suffices to
show that I, : (]_[l=1 x;)% = Ir.. But this follows from Theorem 3.20. |

Theorem 3.20 Let L C Z" be a lattice. Then Iy, : ([/_; xi)™° = IL.

Proof We only need to show that I7, : ([]/_; x))® C Ir.Let f € I : ([T/=; x)®
By Proposition 3.18 we may assume that f is a binomial, and we may further
assume that f = fj for some b € Z". We want to show that b € L. Since
fo eI ([T, x>, it follows that 1 — xP € I, S, where x = []/_, x;. Observe
that I1 S, is generated by the binomials 1 — x¢ with ¢ € L. Therefore, S, /ISy is
isomorphic to the group ring K[Z" /L] which admits the K -basis consisting of the
elements of the group G = Z" /L with group operations in multiplicative notation.
In particular, the unit element 15 of G is equal to 0 4 L. Multiplication of elements
of K[G] is defined by linear extension of the multiplication on G. The isomorphism
Sy/IL Sy — K[G]is given as follows: let x¢ € S, with ¢ € Z". Then x¢ + IS, is
mapped to g = ¢+ L in K[G].
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Letg =b+ L. Then g — g = 0in K[Z"/L] because 1 — x? € I;.S,. Due
to the above isomorphism, this implies thatb + L = 0+ L, and hence b € L, as
desired. m]

Corollary 3.21 Let I C S be a binomial ideal. Then I is a lattice ideal if and only
if 1 ([T x)® =1.

Let L C 7Z" be a lattice and let 48 = by, ..., b,, be a basis of the free abelian
group L. The ideal Iy is called a lattice basis ideal of L. In general, I # I.
Consider for example, A = (3,4,5) € 7Z1%3_ The toric ideal 1 is the lattice ideal of
the lattice L with basis 2 = (2, 1, —2), (1, =2, 1). Then I3 = (x2y —z%, xz —y?),
while /7 contains the binomial x* — yz which does not belong to 7.

However one has

Corollary 3.22 Let A be a basis of the lattice L. Then Iz : ([i—; x))® = Ip.

Proof By Theorem 3.19 there exists a lattice L' C Z" such that Iz : ([]/_, x;)®° =
I;, and Theorem 3.20 implies that I;r = Iz : ([['_; x)® C I : (] x)™ =
1.

It remains to be shown that I;, C I;:. Let v € L. We will show that f, € I;/. Let
% =0bi,....,b.. Thenv = >i_, z;b; with z; € Z. We set c(v) = Y '_, |z;| and
show by induction on c¢(v) that f, € I;/. If ¢(v) = 1, then v = £b; for some i, and
hence fy = & fp,. Since I C I it follows that fy € Ij.

Now let ¢(v) > 1, then there exist w € Z" with ¢(w) < c(v) such thatv = w=b;.
By induction hypothesis, fw € Irs, and further fy, € I, as shown before. Thus
formula (3.2) implies that there exists a monomial u such that ufy € Iy/. Since
I =1z : ([1/2; x)®, it follows that fy € I1/. ]

We have seen above that /7, is not always a prime ideal. The lattice ideal I, is
not even a radical ideal if char(K) = p > 0. Indeed, if L = (p, —p) C Z2, then
Ip = (x? —yP),andwehave f =x —y & I but fP € I.

However, if char(K) = 0 or char(K) = p > 0 and p is big enough, then [y is a
radical ideal. More precisely, we have

Theorem 3.23 Let L C 7" be a lattice and let t be the maximal order of a torsion
element of Z" /L. If char(K) = 0 or char(K) > t, then I}, is a radical ideal.

Proof Let f € S with ¥ € I;. We want to show that f € I;. We have f* € I S,.
Suppose we have shown that /7 S, is a radical ideal. Then it follows that f € I S,
and hence f € I SyNS. Therefore, (3.3) and Theorem 3.20 yield that f € Iy.

It remains to be shown that the group ring K[G] isomorphic to S,/Ir Sy is
reduced, where G = Z"/L (see the proof of Theorem 3.20). Since G is of the
form Z"@® @@;_| Z/(m;)Z for some r and suitable integers m; > 0, it follows that
K[G]%Sx/(xi'11 —-1,..., xfff;r — 1)S,. Let K be the algebraic closure of K. If
K[G]is reduced, then K [G] is reduced. Thus we may assume that K is algebraically
closed. Since char(K) > m; fori =1, ...,n—r, it follows that all the polynomials
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x;"" — 1 are separable. Hence x;"" — 1 = [, (x; — u;;) with pairwise distinct

ujj € K. It follows that

e P R ﬂ(xl —ULj s X2 = UDjys s Xneyr — Un—r, ju_,)s
where the intersection is taken over all j; = 1,...,m; fori = 1...,n — r. This
shows that K[G] is indeed reduced. O
Problems

3.11 Let k and [ be positive integers such that ged(k, /) = 1. Show that (x*¥ —
vk, x! — y1) - (xy)® = (x — y). Which is the smallest integer m with the property

that (&% — y*, ' =) (aep)™ = (x = »)?
3.12 Let L C Z" be a lattice. Prove that height /;, = rank L.
3.13 Let X = (x;;) be an m x n-matrix of variables, and let I>(X) C K[X] be the

ideal of 2-minors of K[X], where K[X] is the polynomial ring over the field K in
the variables x;;.

(a) Show that I(X) is a lattice ideal I;. What is the rank of L?

(b) Let Jo(X) be the ideal generated by the adjacent minors X;jx;41,j+1 —
Xi, j+1Xi+1, ] withi =1,...,.m—1land j = 1,...,n — 1. Show that J5(X) is
a lattice basis ideal of L.

3.14 We maintain the notation of Problem 3.13. Show that the lattice basis ideal
J2(X) is aradical ideal if and only if m <2 orn < 2.

3.15 Let K be afield, and 7 be an ideal in the polynomial ring § = K[x1, ..., x,].
Setx = []/_; x;. Then

n
I: (]_[xl-)“’ = IS,NS.
i=1

Here S, denotes the localization with respect to the multiplicatively closed set
{1, x, x2, .. .} consisting of the powers of x.

3.4 Lawrence Ideals

We introduce the notion of the Lawrence ideal A(/) of a binomial ideal. This will
help us to better understand the primitive binomials of /.
Let K[x, y] denote the polynomial ring

K[x,y] = Kl[x1,x2, ..., Xn, Y1, Y20 - - -5 Ynl.
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If f =x® —xP is a binomial belonging to K [x], then we introduce the binomial f*
belonging to K[x, y] by

fﬁ — Xayb _ bea.
Given a binomial ideal I of K[x], the Lawrence ideal of I is defined to be the ideal
AD = f=x*—x"eI). (3.4)
Lemma 3.24 Let I be a binomial ideal of K[x] and let F = u — v be a binomial

in A(I) such that u and v are relatively prime. Then there exists a binomial f € I
such that F = f*.

Proof Let F = xayP’ — xbya/ e A(]).

Then
q
F =" hi(x1, .o, Xn, ¥1, o0 y) (YD — xPiy™), (3.5)
i=1
where h; € K[x,y] and x® — xP e J. By substituting y; = --- = y, = 1 in (3.5),
one has

q
X —xP = hixnx L D — X,
i=1

Thus, x* — xP belongs to /. Furthermore, by replacing in (3.5) y; by x; for each
i=1,2,...,n, we obtain

/ /
Xa+b _ Xh+a =0

)

and hence a+b’ = b+a’. Since xayb, and xbya/ are relatively prime, it follows that
x® and xP are relatively prime. Hence there exist nonnegative integer vectors a” and
b” belonging to Z" such thata’ = a+a” andb’ =b +b”. Sincea+ b’ =b + a
and since y?* and y? are relatively prime, one has a” = b” = 0. It then follows that
F = f% where f = x® —xP. O

Lemma 3.25 Let L C 7" be a lattice. Then we have:

(a) A binomial f € Iy, is primitive if and only if f* € A(IL) is primitive.
(b) Every primitive binomial belonging to A(I1) is of the form fF, where f is a
primitive binomial belonging to I

Proof

(a) Suppose that the binomial f = x* — x € I is not primitive. Then there is

a nonzero binomial g = x* — x? € I; with f # g for which x* |x* and
x?|xP. Then x* y? |x?y? and xP y* |xPy?. Since g% # f7, it follows that f* is
not primitive.
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Conversely, let f = x® —xP € I, and suppose that f# = x®y? — xPy? ¢

A(Iy) is not primitive. Then there is a nonzero binomial G = x¥ yb” — Xb/ya” €

A(IL) with G # fF such that xa/yb“ |x2yP and xb,ya” |xPy2. If xa/yb” and xb,ya”

are not relatively prime, then x® and x® are not relatively prime. Since I is a

lattice ideal, Theorem 3.20 implies that f is not primitive. Suppose that X"‘/yb”

and x?'y?" are relatively prime. By Lemma 3.24, we have G = g%, where g =

x¥ —xP" € I;. One has x* |x® and X' |xP. Since G # f* it follows that g # f.
Thus f is not primitive.

(b) We first observe that A(Iy) is again a lattice ideal, namely A(I;) = I;/, where

L' ={v,-vCZ"xZ":vell.

Since in a lattice ideal, any primitive binomial # — v has the property that u
and v are relatively prime, we may apply Lemma 3.24, and deduce that every
primitive binomial of A(Iy) is of the form f¥, where f = x® — x” € I;. By
(a), f is primitive. |

Theorem 3.26

(a) Let I be a binomial ideal of K[X] and let {gﬁ, gﬁ, e gf,l} be a minimal set o
1082
generators of A(I) with each g; € I. Then the Graver basis of I is contained

in{g1, 82, ..., 8m}
(b) Let I be a lattice ideal. Then the following conditions are equivalent:
G) {g1,.-.,8gm}is the Graver basis of I,
(>i1) {gtlj, R g51} is the Graver basis of A(I);
(iii) {g?, e, gi} is the universal Grobner basis of A(I);
(@iv) {g’f, ceey gfn} is the reduced Grobner basis of A(I) with respect to any
monomial order;
W) {g’f, e gfn} is a minimal set of generators of A(I).

If the equivalent conditions hold, then {gf, ce g51} is the unique minimal set of
generators of A(I).

Proof

(a) Suppose that f = x® — xP € I is primitive. Since f* belongs to A(I) =

(g?, gg, el gfn), there exist polynomials %1, . . ., h,, belonging to K[x, y] such
that /% = x®yP — xPy? = hlgﬁ1 + .+ hmgﬁl. Then a monomial, say x“/yb/,
appearing in one of g?, cee, g,& divides x?yP. Let g? = Xa/yb/ — xb/y“‘/. Then
gi =x¥ —x" € I is anonzero binomial such that x*' divides x* and x"" divides
xP. Since f is primitive, we have f = g;, as desired.

(b) By Lemma 3.25, we have (i) <= (ii). Every reduced Gr&bner basis is a subset
of the universal Grobner basis. Furthermore, it follows from Corollary 3.14 that
the universal Grobner basis is a subset of the Graver basis. Since every reduced
Grobner basis of A(]) is a system of generators of A([/), the equivalence of
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(i1)—(v) follows once we have shown that the Graver basis of A([) is the unique
minimal system of generators of A(I) consisting of binomials.

Suppose that {g’l:, gg, R gﬁl} is a minimal set of generators of A([). It
follows from (a) that the Graver basis of I is contained in {gi, g2,..., gm}. Let
{gi1» &ip» - - - &) be the Graver basis of /. By Lemma 3.25, {g?}, gi, ...,giuk}
is the Graver basis of A([). Since the Graver basis is a system of generators,
we have {g?, gg, el gf,,} = {gfl,gfz, e, g?k}. Therefore, {gili, gg, ...,g51} is the
Graver basis of A(/). In particular, a minimal set of generators of A([) is uniquely
determined. |

Theorem 3.26 can be used to compute the Graver basis of a lattice ideal. For this
purpose it suffices to show that for a given lattice L C Z" a system of generators of
A(Ir) can be determined. We describe a method to do this.

Let % be a basis of L. Since A(I;) = I/, where

L' ={(v,-v)CZ"xZ":vel)},

a lattice basis for L' is 8’ = {(v, —v): v € %B}. The lattice basis ideal of L’ for the
basis A’ is the ideal

Iy = X"y —x""y"*:ve %) in K[x,yl

Now it follows from Corollary 3.22 that

Al = I - ([ T

i=1

This colon ideal can be computed by using Proposition 1.39 or Proposition 1.40.
For an integer matrix A € 74%"  the Lawrence ideal A(I) of the toric ideal 14
is a toric ideal of a configuration. In the rest of the present section, we study how to
construct the corresponding configuration.
The Lawrence lifting of an integer matrix A € Z4*" is the configuration

A(A) — (IA IO) c Z(d+n)><2n’
n tn

where I, is the n x n identity matrix. For example, if

10-10
A=|01-=10| ez
1111
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then its Lawrence lifting is

10-100000

01-100000

11110000
AA)=]10001000|ez™s (3.6)

01000100

00100010

00010001

We will show that A(14) = I4(a)-
Let K[t, t~!, z] denote the Laurent polynomial ring

Kit,t "zl =Kin, ;o5 o ta 0y 222,y 2als
The toric ring of the Lawrence lifting A(A) is
K[A(A)] = K[tMzy, 220, ... t"2,, 21,22, ..., Zn]-
Let K[x, y] denote the polynomial ring
K[x,yl = Klx1,x2, ..., Xn, Y1, Y2, - s Yal
and define the ring homomorphism
m: K[X,y] > K[A(A)]

by setting 7 (x;) = t%z; for 1 <i < nand m(y;) = zj for1 < j < n. The toric
ideal 144y of A(A) is the kernel of 7.

For example, the toric ideal of the Lawrence lifting (3.6) is

Lacay = (X1x2x3y3 — X3 ¥172)3).
Note that A(A)w = 0 for w = (:) € Z?" if and only if Au=0and v = —u.

Thus we have the following proposition.

Proposition 3.27 Ler A € Z4%" be an integer matrix. Then A(14) = IA(a).

Problems

3.16 Let I be a principal binomial ideal. Show that A([) is also a principal ideal.
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3.17 In Proposition 3.15 it is shown that if A is a configuration, then each minimal
set of generators of /4 is contained in the Graver basis of /4. Show this is no longer
true, if the binomial ideal / is not a graded ideal.

3.18 Let L be alattice. Show that I, is a prime ideal if and only if A(/7) is a prime
ideal. Is this statement true for any other binomial ideal?

3.19 Give an example of a binomial ideal / and a binomial f € I such that f is
not primitive but ¥ € A(I) is primitive.

3.5 The Squarefree Divisor Complex

Let K be a field, and let T = K[t1, ..., f7] be the polynomial ring over K in the
variables tq, ..., t;. For a matrix A € Z‘ig” with column vectors a;, we consider
the toric ring R = K[A] = K[uy, ..., u,] withu; = t% for j = 1,...,n and the
K -algebra homomorphism

n:S=K[xi,....,x,] > T with x; > tY. (3.7)

with kernel 74.

In this section we want to analyze the Betti numbers of the free S-resolution of
14. To this end we introduce some concepts and terminology: a simplicial complex
AonV = {vy,v2,...,v,}is a collection A of subsets of V with the property that
forany F € Aand any G C F, it follows that G € A. The elements of A are called
faces, and the maximal faces of A (maximal with respect to inclusion) are called the
facets of A. The dimension dim F of a face is given as dim F = |F| — 1. Finally
we set dim A to be the maximal dimension of a facet of A. Faces of A of dimension
i are called i-faces. Observe that the empty set is a face of A whose dimension is
defined to be —1.

Letd = dim A. Fix a field K. The augmented oriented chain complex of A (with
coefficients in K) is the complex € (A; K):

0— (A K) — C1_1(A;K) — -+ —> 6p(A; K) — €-1(A; K) —> 0,

where
i
G(AK)= @  Ker and der =) (—Dlep,
FeA,dim F=i k=0
and where Fy is defined as follows: let F' = {vjy, ..., v;} with jo < j1 <--- < j;.

Then Fy = {vj, ..., Vj,, ..., vj}. We set
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Hi(A; K) = Hi(€(A; K)), i=—1,...,d—1,

and call H; (A; K) the i-th reduced simplicial homology of A. Similarly one defines
the i-th reduced simplicial cohomology of A, as

H(A; K) = H (Homg (€(A; K), K)), i=—1,....,d—1.

It can be easily shown that the reduced simplicial homology of A does not
depend on the labeling of V. On the other hand, it can be shown by examples
that for i > 1 the vanishing or non-vanishing of ﬁi(A; K) may depend on the
field K. A fundamental theorem of topology (see for example [150, Theorem 34.3])
says that the reduced singular homology ﬁi(X ; K) of a topological space X with
triangulation A can be computed by means of the reduced simplicial homology.
Indeed one has

Hi(X; K) ~ H;(A: K).

One calls a subset H C Z" an affine semigroup, if there are finitely many
elements ay,...,a, € H such that each element of H is a linear combination
A1ap + -+ + Aqa, with A; € Zsg for all i. The elements ay, ..., a, are called
generators of H. The affine semigroup is called positive, if whenever we have
a,—ac H,thena=0.

Coming back to our algebra R = K[A], we notice that it has a K -basis consisting
of monomials t?. We denote this monomial basis by .#. The set of exponents a
appearing as exponents of the basis elements of K[A] together with addition form
a positive affine semigroup H C ZZ, which is generated by ay, ..., a,. We will
assume that these elements form a minimal system of generators of H.

Given an element a € H, we define the simplicial complex

Aa = {F C [n]: u” divides t* in R}.

where u” = [;cpu;.

The simplicial complex A, is called the squarefree divisor complex of H (or of
A).

Let I C R be an ideal generated by elements of .#. Then R/ is an H-graded
K -algebra and the canonical residue class map S — R/I is an H-graded K -algebra
homomorphism if we setdeg x; = a; for j =1, ..., n. It follows that R/I becomes
an H-graded S-module. Consequently, the K-vector spaces Tor;9 (K,R/I) are H-
graded. We set B; a(R/I) = ToriS (K, R/I)a, and call these numbers the H-graded
Betti numbers of R/I. They can be computed from the Koszul complex. Indeed,
Torf(K, R/I)=H;(x; R/I), as an H-graded K -vector space, cf. (2.2).

We will describe the H-graded Betti numbers of R/I in terms of certain reduced
simplicial homologies. Let I be a simplicial subcomplex of A. Then €' (I"; K) is
a subcomplex of € (A; K). The homology of the complex C (A, K)/C(I; K) is
called the relative simplicial homology, and is denoted H(A, I'; K).
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Theorem 3.28 Forac H welet Iy = {F € Ay: t2/uf € I}. Then

(a) K(x; R/I)ag(cg(AaN; K)/6 (Ia; K))(—1);
(b) Bia(R/I) =dimg H;_1(Aa, Ia; K).

Proof
(a) The free R-module K;(x; R) has the multigraded decomposition

KixR)= D R(—degu”),

Clnl.|F|=i

where the differentiation K;(x; R) — K;_1(x; R) on the component
R(—deguf) — R(— deguF/) is given as multiplication by €(F, F')uj,.
Here €(F, F') = 0,if F/ ¢ F,and €(F, F') = (=D* L if F/ = F\ {ji}},

={ji<jp<--<jih

Let us fix a € H. In order to have R(—degu’)a # 0, we must have
a —degu® € H, which is equivalent to saying that u |t?. If this is the case,
then R(— degu’), is a 1-dimensional K -vector space with basis element t*/u .
Thus we see that

Ki(x; R)a = @ Kt /uf.
FeAg,|F|=i
With respect to these K -bases of the K; (x R)a, the maps in K (x; R), are the

same as those in %(Aa, K)(—1), since %(Aa, K) is the complex of K-vector
spaces with

G180 K)= P Ker

and with differentiation on the component Ker — Kep/ which maps er to
€(F, F')ep, as explained in Section 2.2.

Similar arguments apply to K(x; I),. Thus the short exact sequence of
complexes

0— KX;I)a— K(X; R)g — K(Xx; R/I)g — 0

yields the desired isomorphism (a).
(b) is an immediate consequence of (a), since we have TorlR (K,R/D)a=H;(x;R/1)q,
see (2.2). |

For the applications to follow we need a duality statement for relative simplicial
homology. Let A be an arbitrary simplicial complex on [n]. The Alexander dual AY
of A is defined by

V={(F e[n]: F A},

where F = [n] \ F.
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Lemma 3.29 Let I' C A be simplicial complexes on [n]. Then
Hi(A, T K)YZH" 271, AV K)ZH, 0 (T, AY; K),

Proof Letey, ..., e, be abasis of the K-vector space E. Then the elements ef =
ejy N---Nej forall F ={j; < jo <--- < j;} of cardinality i form a K-basis of
A! E, and we have €,(I'; K) C 4,(A; K) ¢ N\ E.

For all i we define an isomorphism of K-vector spaces /\i E — ( /\”_i E)*,
where (/\'H' E)* denotes the K-dual of /\"4 E. This isomorphism assigns to ep
the element e(F, I:”)(eﬁ)*, where (ez)* is the basis element of (/\"_i E)* with
(ep)*(eg) =1if G = F and (e)*(eg) = 0, otherwise, and where the sign € (F, F)
is defined by the equation ey Aep = €(F, F)eiA---Aey. This isomorphism induces
the first isomorphism between reduced simplicial homology and cohomology. For
the second isomorphism see Problem 3.20. O

In general the H-graded Betti numbers S; o of K[A] may depend on the base
field. But nevertheless one has

Theorem 3.30 With the notation introduced, the H-graded Betti numbers p; 5 are
independent of K in the following cases:

(i) i=0,1,n—1,n;,
(i) i =2if REK|[xy, ..., x,];
(i) i=n—-2if1 =0.

Proof The assertions of (i) are obvious for i = 0 and i = n. In fact, p.a = 1 for
a=0and By 5 = 0 fora # 0, while §, 5 is an H-graded component of the socle of
R/I.

By Problem 3.21, dimg ﬁo(A, I'; K) is independent of K for all simplicial
complexes I C A. The same holds for the dimension of ﬁn_z(A, I'; K), since by
Lemma 3.29, this vector space is isomorphic to HO(F v, AY; K). Thus the assertion
fori = 1andi = n — 1 follows from Theorem 3.28(b).

_ Under the assumptions of (ii), A, is a simplex on the set {i: a; # 0}. Therefore,
% (Aa; K) is acyclic, and hence from the long exact homology sequence arising
from the short exact sequence

0 — C(Ia; K) > €(Aa; K) = €(Aa; K)/C(Ta; K) — 0.
we obtain dimg H|(Aqa, Ia; K) = dimg Ho(I; K). This proves (ii).
Finally, if I = 0, then I, = { for all a € H. Therefore, in this case, if we denote
by X' the simplex on [n], Lemma 3.29 implies that

dimg H,_3(Aa, Ta; K) = dimg Hi (2, AY; K) = dimg Ho(A); K).

Thus (iii) follows. |
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Recall that a monomial x?* in S is called squarefree if the exponent vector
a = (ay,...,ay) is squarefree, which means that 0 < q; < 1 fori = 1,...,n.
Lemma 1.13 says that a monomial ideal is a squarefree monomial ideal if it is
generated by squarefree monomials.

As another application of Theorem 3.28 we will prove a theorem of Hochster
[116] which describes the Z"-graded Betti numbers of S/I when I is a squarefree
monomial ideal.

Let K be a field, S = K|[x1,...,x,] be the polynomial ring over K in the
variables x1, ..., x,, and let X be a simplicial complex of [r]. The Stanley—Reisner
ideal of X, denoted Iz, is the squarefree monomial ideal generated by the monomial
Xp = ]_[l- cpXi with F C [n] and F ¢ X'. Note that for any squarefree monomial
ideal I C S, there exists a unique simplicial complex X such that / = [x. The
Stanley—Reisner ring of X over K is defined to be the K -algebra K[X] = S/I5x.

Leta = (aj,...,ay) € Z". We set supp(a) = {i € [n]: a; # 0}.

Theorem 3.31 (Hochster) Let X be a simplicial complex on [n] and a € 7. Then
the following holds:

(a) Bi.a(K[X]) =0, ifais not squarefree. ~
(b) If ais squarefree, then B; a(K[X']) = dimg H\w|—;—1(Xw; K) for all i, where
W =supp(@) and Xy ={F € ¥: F C W}

Proof In the situation of the theorem, H = Z';O, R=S,andl =Iy.letac H.
Then A, consists of all subset of W = supp(a), and hence is a simplex on W.
Furthermore,

Iy ={F € Ay: supp(a—e€p) ¢ X},

where € is the unique squarefree vector with supp(er) = F.

Proof of (a): Let a € Z’;O be not squarefree, and choose j such that a; > 2.
Let o7 be the set of vectors a’ € L%y with a} > 2and a = a; foralli # j.
Then Ay = Ay and I, = Iy for all ' € 7. Thus Theorem 3.28(b) implies that
Bia(K[X]) = Bia(K[X]) for all ' € 7. Suppose that B; (K[X]) # 0. Then
Bia(K[X]) # 0forall a’ € &. Since |o7| = o0, it would follows that K[X] has
infinitely many non-vanishing Betti numbers, a contradiction.

Proof of (b): Let a be squarefree and let W = supp(a). Then F € I} if and only
if W\ F ¢ Xw. This implies that I,” = X, where the Alexander dual of I} is
taken with respect to the vertex set W. Since the Alexander dual Ay with respect to
W is the empty set, Theorem 3.28(b) together with Lemma 3.29 implies that

Bia(K[Z1) = dimg H;_1(Aq, I'a; K) = dimg Hyw—i—1(Zw; K);

as desired. O
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Problems

320 et KbeafieldandC : 0 > Cy —» -+ > C; > - > Cyp —> Obea
complex of finite dimensional K -vector spaces, and let C* = Homg (C, K) be the
dual complex of C. Show that H; (C)=H'(C*) for all i.

3.21 Let I’ - A be simplicial complexes, and let K be a field. Show that the
dimension of Hy(I', A; K) is independent of K.

3.22 Let R = K[A] and I C R be as in Theorem 3.28. Show that all H-graded
Betti numbers of R/I are independent of K if n < 4, or n = 5 and either (i) R is
the polynomial ring or else (ii) I = 0.

Notes

One of the first articles where binomial ideals appeared is [90]. In that paper
the relation ideals of semigroup rings were identified as binomial ideals. A first
systematic treatment of binomial ideals and toric rings is given in the Sturmfels’
book [202] with applications to convex polytopes and integer programming. That
treatment also includes, for the case of toric ideals, the basic facts presented in
Sections 3.1 and 3.2. Hosten and Shapiro [118] introduced lattice basis ideals and
discussed their primary decomposition in some special cases. In the fundamental
article [58], Eisenbud and Sturmfels develop a general theory of binomial ideals
and their primary decomposition. In their terminology, a binomial is a polynomial
with at most two terms. In that paper a more general version of Theorem 3.12
can be found. A similar result for lattice basis ideals has been shown by Fischer
and Shapiro [73], cf. Corollary 3.22. In Section 3.4, Lawrence ideals attached to
binomial ideals are introduced. It is shown in Proposition 3.27 that the Lawrence
ideal of the toric ideal of a matrix is the toric ideal of the Lawrence lifting of
this matrix. A theorem analogue to Theorem 3.26, but stated for Lawrence liftings
appeared first in [204] and can also be found in [202]. Higher Lawrence liftings
were introduced in [185], and have been further generalized and studied in [31].
A different definition of Lawrence ideals is given in [32] which however coincides
with the definition given here, in the case that the given binomial ideal is a lattice
ideal. The content of Section 3.5 is taken from [28].

For further reading we recommend the book [146] by Miller and Sturmfels, the
article [58] by Eisenbud and Sturmfels, as well the papers [123, 124, 170] for newer
developments.



Chapter 4 ®)
Convex Polytopes and Unimodular oy
Triangulations

Abstract The triangulation of a convex polytope is one of the most important topics
in the classical theory of convex polytopes. In this chapter the modern treatment
of triangulations of convex polytopes is systematically developed. In Section 4.1
we recall fundamental materials on convex polytopes and summarize basic facts
without their proofs. The highlight of Chapter 4 is Section 4.2, where unimodular
triangulations of convex polytopes are introduced and studied in the frame of initial
ideals of toric ideals of convex polytopes. Furthermore, the normality of convex
polytopes is discussed. Finally, in Section 4.3, we study the Lawrence lifting of a
configuration, which is a powerful tool for computing the Graver basis of a toric
ideal. Furthermore, unimodular polytopes, which form a distinguished subclass of
the class of normal polytopes, are discussed.

4.1 Foundations on Convex Polytopes

We collect fundamental material on convex polytopes and summarize basic facts on
their classical theory. A detailed proof of each fact, which will be omitted, can be
found in [19, 85, 221].

4.1.1 Convex Sets

A nonempty subset C C R is called convex if, for any two points a and b belonging
to C, the segment

{ra+(1—-—0b:0<t=<1}

is contained in C. Clearly, R¢ is a convex set. Furthermore, if {C)}1c 4 is a family
of convex sets of RY with Nyc4Cx # {, then N, 4 C, is again a convex set of R,
It then follows easily that, given a nonempty subset X C R?, there exists a unique
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convex set conv(X) C RY with X C conv(X) such that, if C ¢ R? is a convex set
with X C C, then conv(X) C C. We say that conv(X) is the convex hull of X.
If X is a finite subset {ay, ..., a;} of RY, then one has

S s
conv(X) = ZriaieRd:0§rieR,i=1,...,s,Zr,-=1}. 4.1)
i=1 i=1

4.1.2 Convex Polytopes

A convex polytope of R is a convex hull of a nonempty finite set of R?. For
example, the tetrahedron of R3 consisting of those points (x, v, z) € R satisfying

x>0,y>0,2>0,2x+3y+5z <1

is the convex hull of {(0, 0, 0), (1/2,0,0), (0, 1/3,0), (0,0, 1/5)} and is a convex
polytope of R3.

4.1.3 Faces

A hyperplane of R? is a subset of R? of the form
H={z1.....20) €R! t az + - +agza = b},

where each ¢; € R and b € R. Given a hyperplane . C R¢ as above, the closed
half-spaces /") and .7~ of R? are defined as follows:

AP ={(z1,....z0) eRY : a1z1 + -+ agzg > b},
A ={(z1,....za) €RY s ajzy + - +aqza < b).

Let # C R be a convex polytope. A supporting hyperplane of & is a
hyperplane .2 C R? such that # N P # @, # N P # & and that either
P HD or P C AT, A face of P is a subset of & of the form 7 N 2,
where 77 is a supporting hyperplane of .

We say that v € &2 is a vertex of &2 if {v} is a face of 2. It follows that v € &
is a vertex of 2 if and only if the following condition is satisfied: If v = (v' +v")/2
withv, v € &2, thenv =V’ =v.

Theorem 4.1 The number of vertices of a convex polytope is finite.
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Let V (£?) denote the set of vertices of 2. Then
P = conv(V(X)).

Furthermore, if &2 = conv(X) with X ¢ R?, then V(£) C X.

Let M denote the matrix whose columns are those vectors (v, 1)! with v €
V(2?). Here (v, 1)! is the transpose of (v, 1) € R4+ The dimension dim £ of
2 is defined to be rank(M) — 1, where rank(M) is the rank of M.

Let .# be a face of £2. Then .% = conv(# N V(?)). In particular, every face
of 2 is again a convex polytope of R¥. It follows from Theorem 4.1 that

Corollary 4.2 The number of faces of a convex polytope is finite.

The dimension dim .% of a face .# is the dimension of .%# as a convex polytope
of RY. A face of Z of dimension 0 is a subset of & of the form {v} with v € V ().
An edge of & is a face of & of dimension 1. A facet of & is a face # of & with
dim.% = dim & — 1. Given a face .¥ of 2, there is a facet %’ of & such that .F
is a face of .7,

Let .% be a face of &2 and .#’ a face of .%. Then .% is a face of &. If .¥ and
' are faces of &2 with # N .%#' £ (4, then F N F’ is a face of L.

Let .Z1,...,.%; be the facets of & and .%; = 4 N P and & C f%”i(—”,
where % is a supporting hyperplane of &, for each 1 < i < t. Then
2 =N, %(H. Conversely, if 4, ..., 7 are hyperplanes of R¢ for which
NiZ; ij(ﬂ is nonempty and bounded, then (/_, %‘;H) is a convex polytope
of RY.

4.1.4 f-Vectors

Let Z C R? be a convex polytope with dim &2 = §. Write f; = f;(Z) for
the number of faces .% of & with dim.# = i. In particular fj is the number
of vertices of & and f5_; is the number of facets of &. We say that the vector
(2 = (fo, f1,-.., fs—1) is the f-vector of L.

4.1.5 Simplicial Polytopes

A simplex of R? of dimension g is a convex polytope 2 C R? with dim 2 = ¢ such
that |V (2)| = g + 1. Every face of a simplex is a simplex. A simplicial polytope is
a convex polytope any of whose faces is a simplex. Equivalently, a convex polytope
& is simplicial if each of its facets is a simplex.
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Problems

4.1 Compute the f-vector of a simplex of R of dimension g.

4.2 Compute the f-vector of the convex polytope & C R3 which is the convex
hull Of {(15 17 1)9 (05 17 1)7 (1’ 07 1)7 (19 17 0)7 (_17 _17 _1)}‘

4.3

(a) Show that (6,9, 5) is the f-vector of a convex polytope of dimension 3.

(b) Find (v, e, f) € Z3 withv > 0, e > 0,f >0and v — e+ f = 2 for which
(v, e, f) cannot be the f-vector of any convex polytope of dimension 3.

(c) Find all the f-vectors of convex polytopes of dimension 3 with at most 6

vertices.
4.4 Show that a convex polytope 2 C R? with V(2) = {ay,..., a,41}is a
simplex of dimension ¢ if and only if the vectors (aj, 1), ..., (az+1, 1) belonging

to R?*! are linearly independent.

4.2 Normal Polytopes and Unimodular Triangulations

In algebraic combinatorics on convex polytopes the normality of convex polytopes
and the unimodularity of triangulations play important roles. The systematic study
of triangulations in the frame of initial ideals of toric ideals of convex polytopes will
be achieved.

4.2.1 Integral Polytopes

A convex polytope & C R is said to be integral if each vertex of & belongs to
Z?. We often use the terminology an integral polytope instead of an integral convex
polytopes. A (0, 1)-polytope is a convex polytope with the property that any of its
vertices is a (0, 1)-vector.

Let Z C RY be an integral convex polytope with 2 N Z¢ = {ay, ..., a,}. We
then introduce the configuration A(<?) € Z@+Dxn whose column vectors are

(a;, D', ..., (ay, 1.

Here, as before, (a;, 1) is the transpose of (a;, 1) € 74+ For example, if & C R?
is the polygon with the vertices (0, 0), (2, 0), and (0, 3), then &2 N 74 consists of 7
integer vectors and

0120001
APZ)=[10001231
1111111
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4.2.2 Integer Decomposition Property

Let 2 C R? be an integral polytope. Given an integer N > 0, the dilated polytope
N £ is defined as follows:

NZ={NacR?:ac ).

In particular if the set of vertices of & is V(&) = {vy, ..., v}, then V(N Z) =
{Nvi,..., Nvg}.

Definition 4.3 We say that an integral polytope &2 C R? possesses the integer
decomposition property if, for each N > 0 and for each a € N2 N Z2, there
exist aj, ...,ay belonging to & N 74, possibly a; = a; for i # j, such that
a=a;+---+ay.

4.2.3 Normal Polytopes

Recall that a configuration is a matrix A € Z4*" for which there exists ¢ € Q¢ with
aj-c=1forl <j<n.Ifay,...,a, are the columns of A, then we define

n
Zz()A = Z%’ai 1 qgi € Z>0} )
i=1

n
ZA=1) aiai : g EZ},
i=1

n
Q=04 =1{> qiai : gi € on}~
i=1

Definition 4.4 A configuration A € Z4*" is called normal if

Z>0A =ZANQxoA. (4.2)
Furthermore, we say that an integral convex polytope & C R is normal if the
configuration A(Z?) e Z€+D*" is normal. A configuration A € Z*" is called
very ample if

ZA N Qs0A \ Z=0A 4.3)

is a finite set. In particular, a normal configuration is very ample.
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In the language of commutative algebra, it can be shown that a configuration
A € Z4%" is normal if and only if the toric ring K[A] is normal, i.e., integrally
closed in its quotient field (Problem 4.5).

Theorem 4.5 If an integral convex polytope & C R? possesses the integer
decomposition property, then & is normal.

Proof In general, in the equality (4.2), the left-hand side is contained in the right-
hand side. Let Z NZ¢ = {a, ..., a,} and o # 0 belong to ZA(Z) N Q>0A(2)
with

1

where ¢ > 0 is an integer and each ¢; € Z>o. Let N = g1 + --- + g,. Since «
belongs to ZA(Z?), it follows that the (d + 1)-th coordinate of & must be an integer.
In other words, (1/¢)N must be a positive integer. Hence, by virtue of (4.1), it
follows that @ belongs to (1/g)N Z’, where 22’ C R4+ is the convex polytope
which is the convex hull of {(aj, 1), ..., (a,, 1)}. Since & possesses the integer
decomposition property, it follows that 22’ also possesses the integer decomposition
property. Hence there exist nonnegative integers ¢, ..., g, with (1/¢)N = q| +
-+« + g,, for which

a=gqj@,)+- - -+q,(a,1).

Thus o € Z>9A(S), as desired. O
Howeyver, the converse of Theorem 4.5 is false.

Example 4.6 Let &2 C R3 be the tetrahedron with the vertices
0,0,0), (0, 1, 1), (1,0, 1), (1, 1, 0).

Then & is normal, but cannot possess the integer decomposition property.

In fact, Z>0A(Z?) consists of those integer points (x,y,z, w) € Zio such
that x + y + z = 2w. Furthermore, ZA(Z?) consists of those integer points
(x,y,z,w) € 7Z* such that x + y + z = 2w. Hence Z>0A(¥) = ZA(Z) N
Q>0A(Z) and & is normal. On the other hand, even though (1, 1, 1) belongs
to 242, it is impossible to write (1,1,1) = o + B, where o and B belong to
{(0,0,0), (0,1, 1), (1,0, 1), (1, 1,0)}. Thus & cannot possess the integer decom-

position property.

Theorem 4.7 Let &2 C R? be an integral convex polytope and suppose that
ZA(Z) coincides with 7411, Then 2 is normal if and only if & possesses the
integer decomposition property.

Proof Work with the same notation as in the proof of Theorem 4.5. The “if” part
follows from Theorem 4.5. We show that “only if” part. Let &2 be normal. Since
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ZA(Z) = 72+, it follows that
Z=0A(P) = 2 N Q=0A(2).
Let B € N&. Again, by virtue of (4.1), one has
B =qiai + -+ gpan,
where each g; € Q>pand g1 + --- + ¢, = N. Hence
B N)=qi(ai, 1) +---+qn(ay, ).

Thus (B, N) € Z4+! NQs>0A(Z). It then follows that (8, N) € Z>0A(Z?). In other
words,

(B.N) =qj(ar, D)+ -+ g,(@n, 1),
where each ¢/ € Z>p and g; + --- + g, = N. As aresult,
B=qiai+ - +q,an.

Thus & possesses the integer decomposition property, as required. O

4.2.4 Triangulations and Coverings

Let, as before, 22 C R? be an integral convex polytope of dimension dim & =
sand 2 N7Z = {af,...,a,). Let A(P) e ZYHD*" pe a configuration
whose column vectors are (aj, 1)', ..., (a,, 1)’. It then follows that dim & =
rank(A(Z?)) — 1. A simplex belonging to Z is a subset F of &2 N Z¢ for which
2 = P(F)isasimplex of R?, i.e.,dim 2 = |F|—1. Thus in particular the empty set
is a simplex belonging to & of dimension —1. Every subset of a simplex belonging
to &2 is again a simplex belonging to £2. A maximal simplex belonging to &2 is a
simplex belonging to & of dimension §. Every simplex belonging to £ is a subset
of a maximal simplex belonging to & (Problem 4.8). A maximal simplex belonging
to 2 is called fundamental if ZA(Z) = ZA(F), where A(F) C Z@+Dx@+D jq
the configuration whose column vectors are those (a;, 1)’ with a; € F.

Definition 4.8 A collection A of simplices belonging to &2 is called a triangulation
of & if the following conditions are satisfied:

e If Fe Aand F/ C F,then F' € A;
e If F and G belong to A, then P(F) N P(G) = P(F N G);
* P =UreaP(F).
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Each simplex of a triangulation A of &7 is called a face of A. A facet of A is a
face of A which is a maximal simplex belonging to &. Every face of A is a subset
of a facet of A. A triangulation A of & is called unimodular if every facet of A is
fundamental.

Example 4.9 Let &2 C R3 be a convex polytope whose vertices are
(0,0,0), (0,1, 1), (1,0, 1), (1,1,0), (1, 1, 1).
Then
P NZL ={0,0,0),(0,1,1),(1,0,1),(1,1,0), (1, 1, 1)}
and ZA(Z) = Z*. Let

F1 =1{0,0,0), (0,1, 1), (1,0, 1), (1, 1, 0)},
F,={0,1,1), (1,0, 1), (1,1,0), (1, 1, 1)},
F3 ={(0,0,0), (0,1, 1), (1,0, 1), (1, 1, 1)},
Fy =1{0,0,0),(0,1,1),(1,1,0), (1, 1, 1)},
F5 ={(0,0,0), (1,0,1),(1,1,0), (1, 1, 1)}.

Since (1,1,1,1) € ZA(Fp), it follows that F; cannot be fundamental. Each of
F>, F3, F4, and Fs is fundamental. Let A be a set consisting of F3, Fy4, F5, and their
subsets and A’ a set consisting of F|, F5, and their subsets. Then each of A and A’
is a triangulation of £2. Furthermore, A is unimodular and A’ is not unimodular.

A collection §2 of maximal simplices belonging to & is called a covering of &
if & = Uregp P(F). Every triangulation of &7 is a covering of &?. A covering £2
of & is called unimodular if every F € §2 is fundamental.

Lemma 4.10 Let 2 denote the set of maximal simplices belonging to &?. Then 2
is a covering of . Thus in particular every integral convex polytope possesses a
covering.

Proof Leta € & and, by using (4.1), write « = Y, r;a;, where each r; € Qx
and )7, r; = 1. Among such expressions, we choose an expression for which
{i : ri # 0} is minimal with respect to inclusion. Then F = {a; : r; # 0}
is a simplex belonging to &?. To see why this is true, suppose that P(F) is not a
simplex of RY. Let, say, F ={1,2,...,q}. Then (a1, 1), (a2, 1), ..., (a4, 1) cannot

be linearly independent. Let, say, (a,, 1) = 27:_11 r{(a;, 1) with each r] € Qxo.

Then one has Z?;ll r{ = 1. Since &« = Y, r;a;, where 0 < r; € Qs and
Z?zl ri = 1, it follows that
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g—1

gqg—1
o= riai+ry()_ri@i. 1),

i=1 i=1

where

Thus a belongs to P({a1, a2, ...,a,-1}), which contradicts the minimality of F'.
Hence F is a simplex belonging to &2. Let F’ be a maximal simplex belonging to
& with F C F'. Then o € F'. Hence 2 is a covering of &2, as desired. |

Theorem 4.11 An integral convex polytope which possesses a unimodular covering
is normal.

Proof Let §2 be a unimodular covering of an integral polytope &2 C R?. What we
must prove is the equality Z>0A(Z?) = ZA(Z?) N Q>0A(Z?). In general, the left-
hand side is contained in the right-hand side. Let o € ZA(Z?) N Q>0A(Z?) and
o =Y ri(a, 1) witheachr; € Qso. Letr = >} ;r; > Oand o = (¢/, 7).
Then, again by using (4.1), one has (1/r)a’ € 2. Since £2 is a covering, it
follows that there is F € 2 with (1/r)a’ € P(F). Let, say, F = {aj, a, ..., as},
where § = dim £. Then (1/r)a’ = Zleri/a,-, where each ] € Qo and
>, 7/ = 1. In particular ((1/r)a/, 1) € Qs0A(F), where A(F) C Z@+D*0+D
is the configuration whose column vectors are (ag, 1)!, (a2, 1), ..., (as, 1). It then
follows that « = r((1/r)a’, 1) € Qs0A(F). Since F is fundamental, one has
ZA(P) = ZA(F). Hence o € ZA(F) N Qx=pA(F). Thus

8

s
o= Zqi(ai, = Zri(ai» D,
i=1

i=1

where each g; € Z and each r] € Q. Since F is a simplex belonging to &, it
follows that (aj, 1), (az, 1), ..., (as, 1) are linearly independent. Thus ¢; = r; for
each 1 <i < §.Hence a € Z>0A(F) C Z>0A(Z?), as desired. O

Corollary 4.12 An integral convex polytope which possesses a unimodular trian-
gulation is normal.

The simplex &2 C R3 of Example 4.6 clearly possesses a unimodular triangula-
tion, but cannot possess the integer decomposition property.
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4.2.5 Regular Triangulations

Let 2 C RY be an integral convex polytope with 2 N Z¢ = {ay,...,a,} and
A(P) € 7@+Dxn he configuration whose column vectors are (ay, 1), ..., (a,, 1)’
LetT =K [tlﬂ, e, t;H, s] denote the Laurent polynomial ring in (d + 1) variables
over a field K and S = K|[x,...,x;] the polynomial ring in n variables over
K. Given a = (aj,...,ag) € 7%, one can associate the Laurent monomial
t* = " 1,Y € T. The toric ring K[Z] of 2 is the toric ring K[A(Z)] of
A(Z) and the toric ideal I is the toric ideal I4(s) of A(Z?). In other words,
K[4] is the subring of T generated by those Laurent monomials t?!s, .. ., t*s and
I % is the ideal of S which is the kernel of the ring homomorphism 7 : § — T
defined by 7 (x;) =t¥sfor1 <i <n.

Fix a monomial order < on § and study the initial ideal in. (/%) of I with
respect to <. Recall that the radical /in. (/%) of in.(I4) is the subset of §
consisting of those polynomials f € S with fV € in_(I%) for some N = Ny > 0.

Lemma 4.13 A subset F of 2 N 74 is a simplex belonging to 2 if

[ ¢Vina(z). (4.4)

a,eF
Proof Let F = {a;;,a;,,...,a;,} C &N 74 satisfy (4.4). What we must prove
is that the vectors (a;, 1), (a;,, 1), ..., (a;,, 1) belonging to Q4+ are linearly

independent. If not, then one has (g1, g2, ..., gn) # (0,0, ...,0) witheachg; € Z
such that

qgi@ai,, 1) +qaa;,, D+ +gn(@y, 1) =0.

LetUyr ={k : qr >0}and U_ = {k : qr <0}. Then

> ar@i. D= ) —qua,. D).

keU4 k'eU_
Thus,in T = K[tlil, R tjtl, s], one has
[T@on = [T @
kEU+ k'eU_

Hence the binomial

- T o
173 Lys

keU, KeU_
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belongs to . Thus either u = [[icy, %7 or v = [lpey. ¥, 9 belongs
to in< (/). Hence either \/u or /v belongs to /in-(I»). Thus [, .pxi €
Vinc(Iz). o

Now, we write A(in<(12)) for the set of those subsets F ¢ & N Z4 satisfying
the condition (4.4). In other words,

Alinc(Ip) ={Fc2nZ: []x¢Vin(xr)}

a;eF

Lemma 4.13 says that A(in<(/2)) consists of simplices belonging to 2.

Theorem 4.14 The collection A(in.(I5)) of simplices belonging to & is a
triangulation of &.

Proof First it follows immediately from Lemma 4.13 that if F € A(in< (/%)) and
F' C F,then F’' € A(in.(I»)).

Second, given F and F’ belonging to A(in.(/2)), we show conv(F) N
conv(F’) = conv(F N F’). One has conv(F N F’) C conv(F) N conv(F’).
If conv(F) N conv(F’') # conv(F N F’), then there exist nonnegative integers
gi- 4}, q;, qx for which

Y ogai+ Y qaj= Y qa+ Y g,

a;,eFNF’ ajeF\F’ a;,eFNF’ ayeF'\F
/
2wt D 4= ) dt )
a;eFNF’ ajeF\F’ a;eFNF’ areF’'\F
Z q; #0, Z gk # 0.
ajeF\F’ ayeF'\F

Then the binomial

’
qi qj 4q; qk
[T " IT 7= I1 «" I «

a,eFNF’ ajeF\F’ a; e FNF’ ayeF'\F

belongs to the toric ideal /2. Hence either u = [, ¢ prp ;" [ajer\s x?’ orv =

’
[lajernr x?" [layernr x{* belongs to the initial ideal in- (/). Thus either /u

or /v belongs to +/in- (/). As a result, either ]_[al_eF xi or [, cpr xi belongs to
J/in_(I»), which contradict the fact that each of F and F’ belongs to A(in. (/5)).

Third we prove & = |Jpcagin_ (1)) €ONV(F). It is known [94, Theorem 3.1.2]
that there exists a nonzero and nonnegative integer vector w = (wi, ..., ®,) with
inc(Ig) = iny,(Ix) = (in,(f) : 0 # f € Ix), where in, (f) is the sum of all
terms of f such that the inner product of its exponent vector and w is maximal.
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Suppose conv(Z) # UFEA(in<(Iy)) conv(F) and choose o € conv(Z) N Q¢
with « ¢ Upe Ain (1)) COnV(F). The set Z C Q" of nonnegative vectors
(r1,...,rm) € Q" with 37, r; = 1 for which @ = ) _7_, r;a; is a bounded closed
set of the distance space Q" and the function wr; +- - - +wyr, on £ is continuous.
Hence, by virtue of the extreme value theorem, there is (ri‘ yeeo, 1)) € & with

orrf + -+ opry =min{forry + - Fopry 2 (1, ) € XL

Letr =g /N, where N is a positive integer and where each ¢ is a nonnegative

integer. Then No = Y 7_,qFa; with Y7, ¢* = N. Letu = [[._, x,.q". If
u & inc(I»), then F = {a; € Z;r} # 0} € A(inc(I»)) and a €
UFeadn. (1) conv(F), which contradict & & U e an_(1,,)) conv(F). Hence u €

X
J/in. (I ). Thus there is an integer m > 0 with u™ = H?:l ximq’ € inc(I»).

Macaulay’s Theorem 1.19 says that there is a monomial v = []}_, xip " of degree
Nm with v € in_ (I ) for which u™ — v € I 4.
Now, since in. (I ) = in, (I ), it follows that
wimgy + -+ wymq,; > o1p1+ -+ 0y pp. 4.5)
Since u™ —v € Ip,onehasmNa =Y/, mg}a; = ) i, p;a;. Thus
n n
ot:Z(pi/mN)a,-, Zpi/mNzl.
i=1 i=1
Hence (p1, ..., pn)/mN € Z . However, the inequality (4.5) then contradicts the
minimality of w7} + - - - 4+ w,7;. |

A triangulation A of & is called regular if there is a monomial order < on §
with A = A(inc (I »)).

Example 4.15 The integral convex polytope 22 C R3 with the vertices
0,0,0), (0,1,1), (1,0, 1), (1,1,0), (1,1, 1)

possesses exactly two triangulations A and A’ given in Example 4.9 and each of
them is regular. (Problem 4.9.)

Example 4.16 A typical nonregular triangulation is now given. Let &2 C R? be the
integral convex polytope with the vertices

a; = (0,2), a2 = (4, -2), a3 = (—4, -2).
Let

as = (0,1), as = (2, —1), ag = (=2, —1).
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Fig. 4.1 A nonregular ay
triangulation.
ay
a6 a5
\o
as oaQ

Then the triangulation of & consisting of
{a1, a2, a5}, {a;, a4, as}, {az, a3, a¢},
{a2, as, ag}, {a1,a3, a4}, {a3, a4, a6}, {a4, as, ag}

and their subsets (Figure 4.1) is not regular. See Problem 4.10.

It is natural to ask when a regular triangulation A(in(/4)) is unimodular.
Recall that in. (/) is called squarefree if in. (/o) = +/in~ (/). By Lemma 1.13,
in. (I ) is squarefree if and only if in. (/) is generated by squarefree monomials.

Theorem 4.17 A regular triangulation A(in<(Is)) is unimodular if and only if
in. (I ) is squarefree.

In order to prove Theorem 4.17 techniques on Hilbert functions together with
Ehrhart functions will be required. Let f; denote the number of faces F of
A(in. (I2)) with |F| =i + 1. We say that the sequence

fAGn.(U»))) = (fo, f1, .-, f5)s

where § = dim &, is the f-vector of A(in.(I)).

Lemma 4.18 A monomial u = x;“ .. x" € S does not belong to /in_(I ») if and
onlyif W ={a; : ¢q; > 0} is aface of A(in<(I%)).

Proof Since +/in.(I %) is generated by squarefree monomials, it follows that a
monomial u = x{'---x" does not belong to v/in=(1») if and only if \/u =
Hqi>0 x;i = [ [, cw Xi does not belong to v/in<(1»). |
Corollary 4.19 The number of monomials of S of degree N which do not belong to

Jin. (1) is

§

N —1
Zﬁ( . ) N=12...
i=0 !
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Proof Let W be a face of A(in.(I%)) with |W| = i + 1. Then the number of
monomials u = x{' - -+ x" of degree N with u & /in-(I») for which W = {a; :

qgi > 0}is
(+D+WN—-i—-1)—-1\ (N-1
()00

Since the number of faces W of A(in.(/4)) with |W| =i + 1 is f;, the desired
result follows. m|

Let 22* C RY*! be the integral convex polytope which is the convex hull of
{(a,1) e Rl s ae 2N7Z% and

Zga* = Z(al, 1) + -+ Z(am 1)

In other words, * = {(«, 1) € Rt : o € 7). Recall that the dilated polytope
N 2* c R+ is the convex polytope

NP* ={Na : a € %), N=1,2,...

Leti (£, N) denote the number of integer points « € N &* which belong to Z 7%,
that is to say,

i(P,N)=|NP*NZP*|, N=12,...

We say that i (2, N) is the normalized Ehrhart function of 2.

Lemma 4.20 A maximal simplex F belonging to & is fundamental if and only if

S+ N
|N-F*ﬂZ20@*|=<§ ) N=1,2,..., (4.6)

where dim & = §.

Proof Leta maximal simplex F' = {a;, ..., a;;,, } belonging to & be fundamental.
Then

N-F*NZF* =N - F*NZP*.

Letae N - F*NZF* and write

3+1 o+1

a—= er(aij, 1) = qu(aij’ 1),

j=1 j=1



4.2 Normal Polytopes and Unimodular Triangulations 101

where each 0 < r; € Q with Zig rj = N and where each g; € Z. Since F

is a simplex and since Ziill rj = N, Problem 4.4 guarantees that r; = g; for

1 <j<6é+1. Hence
N -F*NZP* =N - F*NZLsoP*.

Again, by using Problem 4.4, it follows that | N - F*NZx0Z7*| is equal to the number

of sequences (g1, ..., gs+1) € Z‘S;Bl with Zig N; = N. Hence the left-hand side
of the formula (4.6) is ((‘SH);,FN*l) = (‘S;N), as desired.
Now, suppose that a maximal simplex F = {a;,, ..., a;;,, } belonging to & is not

fundamental. Thus Z2?* # ZF*. Problem 4.12 then says that Z>oZ?* # ZF*. Fix
ae€ ZP*\ZF*. Let Q2* denote the vector space over QQ spanned by ZZ*. Since
F is a maximal simplex belonging to &, it follows that {(a;,, 1), ..., (a;;,,, D} is
a Q-basis of QZ7*. Thus one can write a = Ziill rj(a;;, 1) with each r; € Q.
Since a € Z*!, one has Zil’ll rj € Z. Choose b = Z‘;g qj(@i;, 1) € ZxoF*
with each g; € Zx¢ for which each r; +¢; > 0. Let Z‘jill (rj +qj) = N.Then
a+beN-F*Sincea+b e Z0P*\ Z>oF*, it follows that

S5+ N
|N-F*ﬂZZo,@*|>|N-F*ﬂZZoF*|=< : )

Hence F fails to satisfy the formula (4.6), as required. O

Let K[t,t!,s] = K[z, tl_l, 7 td_l, s] denote the Laurent polynomial
ring in d + 1 variables over a field K and K[A(Z)] C K[t, t—1, 5] the toric
ring of the configuration A(Z?) € ZW+D>" Thus K[A(Z)] is the subring of
K[t t~!, 5] generated by the monomials t*s, ..., t*s with each deg(t®s) = 1.
Let H(K[A(Z)], N) denote the number of monomials of degree N belonging to
K[A(Z)], that is to say,

H(K[A(P)], N) = |{t*s" : 3N e K[A(P)]}|, N=1,2,...
In other words,
H(K[A(P)],N) = |NP* N L0 P¥|, N=12,...
We say that H(K[A(Z?)], N) is the Hilbert function of K[A(Z)].

It follows from Macaulay’s Theorem 1.19 that

Lemma 4.21 The number of monomials u € S = K[xy, ..., x,] of degree N not
belonging to in. (I ) is equal to H(K[A(Z)], N).

Lemma 4.22 Let f(A(in<(I»))) = (fo, f1,..., fs) be the f-vector of the
triangulation A(in. (1)), i(Z?, N) the normalized Ehrhart function of & and
H(K[A(Z)], N) the Hilbert function of K[A(Z)].
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(a) One has

b (N-1
Zﬁ( ; )SH(K[A(Q)],N)gi(ﬁ,N), N=12,...

i=0
(b) The integral polytope & is normal if and only if
H(K[A(P)],N) =i(£, N), N=1,2,...

(¢) The triangulation A(in< (I %)) is unimodular if and only if

8

N-—1
Zﬁ( ; > = HKK[A(P)],N), N=12,... 4.7)
i=0

Proof

(a) Since in.(I») C +/in<(I2), the left inequality follows from Corollary 4.19
and Lemma 4.21. Furthermore, if a monomial ]_[le(t?i)qisN of degree N
belongs to K[A(Z)], then N = Z?:l g; and Z?:l gi(a;, 1) belongs to
NZ7* N Z27*. Hence the right inequality follows.

(b) We claim

Q0 P* NZP* = (0} U (u?\,"zl (No* N Z@*)). 4.8)

Clearly the right-hand side of (4.8) is contained in the left-hand side of (4.8).
Leta € Q>0 27" N ZF* and

d d

a=> ri(@, )= g@l),
i=1 i=1
with each 0 < r; € Q and ¢g; € Z. One has Z;izl ri = Z?:l gi- Let Zle ri =
N.Then N € Zs¢. Thus @ € N Z7*, as desired.
It follows from (4.8) that & is normal if and only if

ZooP* = (0} U (u;;o:] (NF* N Z@*)). (4.9)

Let # C R4*! be the hyperplane consisting of those points (y1, ..., y,, N) €
R4+!_ Then one has (4.9) if and only if

L0 P Ny = NP NLP*, N=1,2,... (4.10)
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Since |Z>o P* Ny | = H(K[A(Z)], N) and |N Z*NZP*| = i(Z, N) and
since the left-hand side of (4.10) is contained in the right-hand side of (4.10),
it follows that one has (4.9) if and only if H(K[A(Z?)], N) = (£, N) for
N=12,...

(c) In general, given a simplex F belonging to 22, its interior F® is defined to be

F(i)= Zriai:0<rie(@,2ri=1

a;eF a;eF

Let W and W’ be faces of A(in< (1)) with W # W’. Then, since P(W) N
P(W') = P(W N W), one has W N W@ = ¢. Thus & possesses the direct
sum decomposition

P = U w@, (4.11)
WeA(in<(I5))
Hence
NZ*NZ02*= (] NW) NZz0P*, (4.12)
WeA(in. (1))
where

WO = {(a, 1) e R . ¢ e WD),

One has |N 2* N Z=02*| = H(K[A(Z)],N). If W € A(in_(I»)) with
|W| =i+ 1, then IN(WD)* N Z2g2*| > (V7). Thus

8
WeA(n- (1)) i=0 !

As aresult, one has (4.7) if and only if the following condition () is satisfied:

(#) Eachface W € A(in-(I)) with |W| =i 4 1 enjoys the property that
(i) \* % N —1
INWYNY* N ZsoP*| = . , N=1,2,... (4.13)
1

We show that () is equivalent to the condition that A(in- (/4)) is unimodular.
Let, in general, F' be a maximal simplex belonging to &. Since the number of

simplices W belonging to & with W C F and with |W| =i + 1 s (fill),



104 4 Convex Polytopes and Unimodular Triangulations

)
S+ 1\ /N —1
|N.F*mzzoﬂ*|z§:<_11>< , ) N=12,...
1 1
i=0

Furthermore, counting the number of monomials of degree N in § 4+ 1 variables

(=500

It then follows from Lemma 4.20 that F is fundamental if and only if each simplex
W C F belonging to &2 with |W| =i + 1 enjoys the property (4.13). In particular
if the condition () holds, then each facet F € A(in_ (I %)) is fundamental. Hence
A(in< (I4)) is unimodular. Conversely, suppose that A(in< (/%)) is unimodular.
Then each facet F € A(in.(I4)) is fundamental. Since each face W € A(in. (I %))
is a subset of a facet FF € A(in_(/4)), the condition (#) is satisfied. O

Theorem 4.17 now follows from Lemma 4.22. In fact,

Proof (Proof of Theorem 4.17) It follows from Corollary 4.19 and Lemma 4.21 that
Jin.(I2) = in. (I ) if and only if the equalities (4.7) hold. Thus the desired result
follows from Lemma 4.22 (¢). O

Corollary 4.23 An integral convex polytope 2 C RY is normal if there is a
monomial order < on S with \/in.(I ) = in_(I »).

Corollary 4.24 Suppose that & possesses a regular unimodular triangulation.
Then

)
i(@,N):Zﬁ(Ni_l) N=12,...
i=0

The converse of Corollary 4.23 is false.
Example 4.25 Let 2 C R'0 be the integral convex polytope with dim &2 =
whose vertices are
e +e, ext+e3, e3+e4, e4+es, e +es,
er+es € +e; e +e;, e3+e;, e3+es,
es+eg, e4+ey, es+ey, € +ej, €5+ ej.

Then the following five binomials appear in any minimal set of binomial generators
of I »:

2 2 2
X2X5X8X14 — X[ X9X15, X[X7X3X10 — X5X6X11, X2X4X9X]12 — X3X8X]3,
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2
X3X5X[1X15 — XjX10X14, X1X4X6X13 — X2X7X]2. (4.14)

It is easy to see that there exists no monomial order such that the initial monomial
of any binomial in (4.14) is squarefree (Problem 4.13). Hence there is no monomial
order < on K|[xi, ..., x15] with o/inc(Iz) = in.(I%). On the other hand, we
can check by using a specialized software (e.g., TOPCOM) that & has a nonregular
unimodular triangulation and hence is normal.

Our work on initial ideals and regular triangulations has been naturally achieved
in the frame of configurations arising from integral convex polytopes. On the
other hand, however, it is straightforward to recognize that, in the language of
commutative algebra, Corollary 4.23 can be interpreted in the following:

Corollary 4.26 Let A € Z4*" be a configuration and K[A] its toric ring. Let I4 C
S = K|[x1, ..., x,] be the toric ideal of A. If there is a monomial order < on S with
Jinc(I4) = in. (1), then K[A] is normal, i.e., integrally closed in its quotient
field.

Proposition 4.27 Let A € 74" be a (0, 1) configuration and K[A] its toric ring.
If 14 has a quadratic Grobner basis, then K[A] is normal.

Proof Let A = (aj,...,a,;). Suppose that there exists a monomial order <
such that a Grobner basis {g1, ..., g} of 14 is quadratic. We may assume that
{g1, ..., gs} is reduced. By Theorem 3.6, each g; is a binomial. If g; = sz. — XpXyg
for some 1 <i < s, then 2a; = a; + ay. Since a;, a, and a, are (0,1) vectors, we
have a; = a; = ay, and hence j = k = £. Thus g; = 0, which is a contradiction.
Hence both monomials in g; are squarefree for each 1 < i < s. Thus in.(/4) is
squarefree. By Corollary 4.26, K[A] is normal. O

Example 4.28 (Example 2.30) Let

11110000
10011001
11001010
A=(ay,...,a)=|01100110 | ez
00110101
00001100
00000011

Then the toric ideal /4 of A is generated by the quadratic binomials
X2X8 — X4X7, X1X6 — X3X5, X[X3 — X2X4.

Leta = (0,1,1,1,1,1, 1)". Since we have

1
0l=5(35+36+a7+ag)=a4+a5+a7—al,
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the vector o belongs to Q>0A N ZA. However, o does not belong to Z>oA. Thus
K[A] is not normal. By Proposition 4.27, I4 has no quadratic Grobner bases. We
now show that K[A] = K[xi, ..., xg]/I4 is Koszul. Let B = (ay, ..., a7) € Z7*7
be a subconfiguration of A. Then the toric ideal Ip of B has a quadratic Grobner
basis

{x1x6 — x3X5, X1X3 — X2x4}

with respect to a reverse lexicographic order induced by x; < --- < x7. Hence
K[B] = K][x1,...,x7]/Ip is Koszul. Then (K [x1, ..., x7]/1p)[xg] is also Koszul.
Since

Klxt,...,x8]/1a = (K[x1, ..., x7]1/1p)[x8]/(x2X8 — X4x7)

and since xoxg — x4x7 is a nonzerodivisor on (K [x1, ..., x7]/Ip)[xg], it follows
from Corollary 2.22 that K[A] is Koszul.

Problems

4.5 Show that a configuration A € Z4*" is normal if and only if the toric ring K[A]
is normal.

4.6 Let 22 C IR? be the integral polytope with the vertices
(2,0,0),(0,2,0),(0,0,2), (1, 1,0), (1,0, 1), (0, 1, 1).

Show that & possesses the integer decomposition property.
4.7 Find an example of a very ample integral polytope which is nonnormal.

4.8 Let & C R? be an integral convex polytope. Show that every simplex
belonging to &7 is a subset of a maximal simplex belonging to Z.

4.9 In Example 4.15, show that the integral polytope & C R3 possesses exactly
two triangulations and each of them is regular.

4.10 In Example 4.16, show that the triangulation is not regular.

4.11 Find the normalized Ehrhart function of the integral convex polytope & C R?
with the vertices (0, 0), (3, 0), (0, 2), (4, 3).

4.12 In the proof of Lemma 4.20 show that if Z>¢%?* = ZF*, then ZZ* = ZF*.

4.13 Show that there exists no monomial order such that the initial monomial of
any binomial in (4.14) is squarefree.
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4.3 Unimodular Polytopes

Unimodular polytopes, which form a distinguished subclass of the class of normal
polytopes, are discussed.

An integral convex polytope & C R? is called unimodular if every triangulation
of 2 is unimodular. For example, the integral convex polytope &2 C R3 discussed
in Example 4.9 cannot be unimodular.

Theorem 4.29 Given an integral convex polytope &2 C R, the following condi-
tions are equivalent:

(1) < is unimodular;
(ii) Every maximal simplex belonging to &2 is fundamental;
(iii) Every regular triangulation of & is unimodular;
(iv) The initial ideal in.,, (1) is squarefree for any lexicographic order <jex.

Proof Each of (i) = (i) = (iii)) = (iv) is clear. We prove (iv) = (ii). Let I» C
S = K[x1, ..., x,] be the toric ideal of £. Let F be an arbitrary maximal simplex
belonging to & and fix a total order < on the variables of S with the property that,
for a; and a; belonging to & Nza, if a; € Fanda; ¢ F,thenx; < x;. Let <jex be
the lexicographic order on S induced by <. We claim that F' belongs to the regular
triangulation A(in.,, (I»)). In fact, if ' ¢ A(in.,, (I)), then

[]xieVina,Up) =inc, ().

a;eF

Thus there exists a binomial f = u — v € I with f # 0 for whichin._ (f) =
u= ]_[at_eF x;. Since F is a simplex, it follows that I N K[{x; : a; € F}] = (0).
In particular f ¢ K[{x; : a; € F}]. Thus there is jo with aj, & F such that x,
divides v. Since x; < xj, for eachi witha; € F, one has u <jex v, which contradicts
ing, (f) = u. Thus F € A(in., (I»)). Since A(in.,, (/5)) is unimodular, it

follows that F is fundamental, as desired. m]
In general, a configuration A = (aj, as,...,a,) € 74%1 is called unimodular if,
for an arbitrary monomial order < on § = K|[x1, ..., x,], the initial ideal in_ (14)

of the toric ideal 14 is squarefree. It follows from the proof of Theorem 4.29 that A
is unimodular if and only if, with respect to any lexicographic order <jex on S, the
initial ideal in., (14) is squarefree.

Given a monomial u € S, let var(u) denote the set of those variables x; which
divides u. Moreover, for a binomial f = u — v, where u and v are monomials
belonging to S with u # v, let

var(f) = var(u) U var(v).

We say that a binomial f = u — v is squarefree if each of u and v is squarefree.
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An irreducible binomial f belonging to a toric ideal 14 is called a circuit of
14 if there is no binomial g € I4 with g # 0 such that var(g) C var(f) and
var(g) # var(f).

First, we observe the following fact.

Lemma 4.30 Let f = u — v be a binomial, where u and v are relatively prime.
Then f is reducible if and only if there exist monomials u’' and v' together with an
integer p > 1 for whichu = u'? and v = v'P.

Proof Since u and v are relatively prime, there exists a vector b € Z" such that
f = fb. Then the ideal (f) is a lattice ideal I;, where L is a lattice generated by b.
By Theorem 3.17, I, is prime if and only if the abelian group Z" /L is torsionfree,
that is, there exist no integers p > 1 such thatb = pb’ for some b’ € Z". Thus f is
irreducible if and only if there exist no monomials u’ and v’ together with an integer
p > 1 for whichu = u'? and v = v'P. O

It follows from Lemma 4.30 that every primitive binomial of a toric ideal is
irreducible.

Lemma 4.31 Let g € 14 be an irreducible binomial and f € 14 a circuit. Suppose
that var(g) = var(f). Then g = f.

Proof Let, say, x1 € var(f) and f = xf’u — v, where p > 1 and x1 & var(u).

Letg = xfu’ — v/ with x| & var(u’). Since each of the binomials (xfu)q — v and
(xi’u’)l’—v’l’ belongs to I 4, one has h = u9v'P —u’Pv? € I4. Since f is a circuit and
since var(h) C var(f) with x; & var(h), it follows that 7 = 0 and u9v'? = u'Pv9.
Furthermore, since var(u) Nvar(v) = ¢ and var(u") Nvar(v') = @, one has u? = u'?
and v9 = v'P. Let p # g, say, p < ¢. Then there exist a prime number k > 1
and an integer £ > 1 such that k* divides ¢, but k¢ does not divide p. If xl.a " divides

!
either u’ or v/, then k divides a;. Hence g = x{u’ —v' = (x u()* — (v))* cannot be

irreducible. Similarly, if p > ¢, then f cannot be irreducible. As a result, one has
p =q.Thus f = g, as desired. O

Lemma 4.32 Given a binomial f = u — v with f # 0 belonging to a toric ideal
14, there is a circuit g = u’ — v' € 14 with var(u’) C var(u) and var(v') C var(v).

Proof By virtue of Lemma 4.30, one can assume that f is irreducible. We work
by using induction on |var(f)|. If f = u — v € I4 is an irreducible binomial
with |var(f)| = 3, then f is a circuit. Let var(f) = {x;, xi,, ...,x,-q} with
q > 3. Considering the ideal T4 N K[x;, x5, ..., xiq], which is the toric ideal
of the subconfiguration of A with the column vectors a;, a;,, ..., a;,, one can
assume that var(f) = {x1, x2, ..., x,}. Furthermore, since f is irreducible, one
has var(u) N var(v) = @. Let g = u' — v’ € I4 be a circuit. Since var(g) C
var(f) = {x1,x2,...,x,}, we may assume that var(u) N var(u’) # . For each
x; € var(u) Nvar(u’), we write a; (resp. b;) for the maximal integer for which x? Hu

(resp. xf” |u). Similarly, for each x; € var(v) N var(v’), we write a; (resp. b;) for
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. . . i bj .
the maximal integer for which x;l’ |v (resp. x j’ |v"). Let a/b be the smallest rational
number in the nonempty finite set

{ai/bi : x; € var(u) Nvar(u')} U {a;/bj : x; € var(v) Nvar(v')}.

Let f* = u? —v? and g* = w'® — v'®, each of which belongs to I4. If x; €
var(u)Nvar(u’), then ab; < ba;.If x; € var(v)Nvar(v'), thenab; < ba;. Now, write
h = u" —v" € I, for the binomial arising from u?v'® — u'*v” by canceling those
variables which appear in both 1?1 and u'“v?. Since var(f) = {x1,x2,..., Xn},
it follows that var(u”) C var(u) and var(v”) C var(v). Furthermore, no variable
xi with a/b = ay /by can belong to var(h). Let h = 0. Since var(u) N var(v) =
#, one has var(u) C var(u’) and var(v) C var(v’). In addition, since var(f) =

{x1,x2, ..., x,}, one has var(u) = var(u’) and var(v) = var(v’). Let h # 0. Then,
by assumption of induction, it follows that there is a circuit go = ug — vo € 14 for
which var(ug) C var(u”) and var(vg) C var(v”). |

Theorem 4.33 Every circuit of a toric ideal 14 belongs to the universal Grobner
basis of 14.

Proof Given a circuit f = u — v € I4, we fix a lexicographic order <jex such
that (i) if x; € var(f) and x; ¢ var(f), then x; <jex x; and (i) v <jex u. Let
% denote the reduced Grobner basis of 74 with respect to <jex. We claim f € .
Since u = in., (f) € in, (14), there is an irreducible binomial g = u’ — v € ¥
with v/ <jex ' for which u’ divides u. In particular var(u’) C var(u) C var(f).
Suppose var(v') ¢ var(f). Then by using (i) one has u’ <jex v’, which contradict
v’ <jex #'. Hence var(v’) C var(f). Thus var(g) C var(f). Since f is a circuit, one
has var(g) = var(f). Lemma 4.31 then guarantees that g = f, as desired. O

For a configuration A € 74%n et €, U4, and 9r 4 denote the set of all
circuits, the universal Grobner basis, and the Graver basis of 14, respectively. By
Theorems 3.13 and 4.33, we have

Ga CUs CYra.

By using the technique used in the proof of Theorem 4.33, it follows that

Lemma 4.34 Let f = u—v € 14 be a circuit. Then there exist lexicographic orders
<lex and <\, such that

(i) u=ino,, (f) and f € G\, (Ly);
(i) v=in (f)and [ €9 (a),

where, say, 9. (1) is the reduced Grobner basis of 14 with respect to <jex.

Theorem 4.35 A configuration A € Z4*" is unimodular if and only if each circuit
of the toric ideal 14 is squarefree.

Proof First, suppose that A € Z¢*" is unimodular. Let f = u —v € I, be a circuit.
By using Lemma 4.34 it follows that there exist lexicographic orders <iex and <j.,
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such that u = in. (f) with f € 9 (I4) and v = in_ <l (f) with f € 9_ : (IA)
Now, since A is unimodular, each of in, (/4) and in_ : (I 4) 18 squarefree “Thus
each of u and v is squarefree.

Second, suppose that each circuit of the toric ideal 14 is squarefree. We claim
that every primitive binomial of I4 is a circuit. Let f = u — v € I4 be a
primitive binomial. Lemma 4.32 says that there is a circuit g = v/ — v’ € Iy
with var(u’) C var(u) and var(v’) C var(v). Since each of u’ and v’ is squarefree,
one has u'|u and v'|v. Since f is primitive, one has f = g. Thus g is a circuit.
In particular every primitive binomial of /4 is squarefree. Now, Theorem 3.13
guarantees that each binomial belonging to the reduced Grobner basis with respect
to any monomial order is primitive. Hence every initial ideal of /4 is squarefree.
Thus A is unimodular, as desired. m]

Corollary 4.36 Let a configuration A € 7" be unimodular. Then all of the
following sets (i), (ii), and (iii) coincide:

(i) The set of circuits of 14,
(ii) The universal Grobner basis of 14,
(iii)) The Graver basis of 1 4.

Proof The Graver basis of 14 is the set of primitive binomials of 74. Since A is
unimodular, it follows from the proof of Theorem 4.35 that every primitive binomial
belonging to 14 is a circuit. Hence the Graver basis of 14 is a subset of the set of
circuits of 74. On the other hand, Theorem 4.33 guarantees that the set of circuits of
14 is a subset of the universal Grobner basis of I4. Since, in general, the universal
Grobner basis of 14 is a subset of the Graver basis of 1,4, it follows that all of the
above sets (i), (ii), and (iii) coincide. |

Lemma 4.37 Let A € Z%" be an integer matrix and A(A) € ZE+Mx2n g
Lawrence lifting. Then every irreducible binomial belonging to 1,a) is of the form
£, where f is an irreducible binomial belonging to I .

Proof Let F be an irreducible binomial belonging to 4 4). By Lemma 3.24, there
exists a binominal f € I4 such that F = f*.

Now, we show that f is irreducible. If f is reducible, then by using Lemma 4.30
there exists an integer p > 1 together with nonnegative integer vectors ap and by
belonging to Z" for which a = pag and b = pbg. Hence

f7 = (xPoyboyr — (xPoydoyp,

which contradicts the fact that f7 is irreducible. O

Lemma4.38 Let A € Z4*" be a configuration and A(A) € ZUEW+MX2 g
Lawrence lifting.

(a) A binomial f € I, is a circuit if and only if f* € IAa) is a circuit.
(b) Furthermore, every circuit belonging to 1,a) is of the form f t where f isa
circuit belonging to 1 4.
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Proof

(a) Let f and g be binomials belonging to I4. Then var(g) C var(f) if and only
if var(g®) C var(f*). Furthermore, var(g) = var(f) if and only if var(g") =
var(f%). Hence if f is not a circuit, then f? is not a circuit. Conversely, if
f% is not a circuit, then there is an irreducible binomial F € (4) for which
var(F) C var(f*) with var(F) # var(f*). By using Lemma 4.37, one has
F = g% where g € I, is an irreducible binomial. Since var(g®) C var(f¥) with
var(g?) # var(f?), it follows that £ cannot be a circuit.

(b) Since every circuit is irreducible, it follows from Lemma 4.37 that every circuit
belonging to 144 is of the form f*, where f is an irreducible binomial

belonging to 74. Now, the desired result follows from (a). O
A subconfiguration B = (a;,, a;,,...,a;,) € 74xm where 1 < m < n, of a
configuration A = (aj, a2, ..., a,) € Z9*" is called combinatorial pure if there is
aface F of conv({a, ay, ..., a,}) such that
{aj,a,...,a,} N F ={a;,a;,...,a;,}.

We call K[B] a combinatorial pure subring of K[A] if B is a combinatorial pure
subconfiguration of A.

Example 4.39 The Lawrence lifting A(B) of the submatrix B = (ag, ..., a,) of a
matrix A = (aj, ..., a,) is a combinatorial pure subconfiguration of A(A).

Lemma 4.40 Every combinatorial pure subconfiguration of a normal configura-
tion is normal. Moreover, every combinatorial pure subconfiguration of a very
ample configuration is very ample.

Proof Let A = (a,...,a,) € 74%1 pe a configuration and B = (a;,, ..., a;,) €
Z3*M 3 combinatorial pure subconfiguration of A. It is enough to show that

ZB N QsoB\ZsoB C ZANQs0A\ Z=0A.

Leta € ZBNQsoB \ Z>oB. It is clear that o belongs to ZA N QxpA. Suppose that
a belongs to Z>pA. Then we have

m n
o = Zqikaik = Zz;aj,
k=1 j=1

where 0 < ¢g;, €e Q1 <k <m)and0 < z; € Z (1 < j < n). Since Aisa
configuration, it follows that 3}, gi, = >"j_, z;.

On the other hand, since B is a combinatorial pure subconfiguration of A, there
is a face F of conv({ay, ay, ..., a,}) such that

{aj,a2,...,a,})NF ={a;,a,,...,a;}.
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By the definition of faces, there exists a vector w € R4 such that

=1, ifkelil,....in)

< 1, otherwise.

W - ag

Hencew - o = >}, qi, = 2?21 zjand z; = Oforall j ¢ {if,...,in}. Thus
a € Z>oB, which is a contradiction. O

Lemma 4.41 Let A € Z4*" be a configuration and suppose that there is a circuit
f =u—v e lywithvar(f) = {xi,, Xiy, ..., Xi, } such that none of the monomials
u and v is squarefree. Then the subconfiguration B of A consisting of the column
vectors a;,, aj,, ..., a;, cannot be very ample.

Proof Let I = Io N K[x;,,Xi,,...,x;,]. Then I coincides with the toric ideal
Ip of B. Since f € Ip and is a circuit of /g, one can assume that var(f) =
{x1,x2,...,x,} with A = B. It follows from Lemma 4.31 that I4 = (f).

Let u = xlzu’ and v = x%v/ . Since f is circuit, f is irreducible, and hence

w (# 1) is not divided by x; and v (# 1) is not divided by x;.

Since n(xlzu/) = n(x%v/), one has n(xlzu’)n(xgv/) = (n(xlzu/))2. Hence
a)m() = (w(u')/m(x2))? Let x; be a variable with k # 1,2 and
let t* = m(x")m(xju’)/m(x2) be the Laurent monomial belonging to
K[, tfl, ), t{l, R tn_l]. Then a,, € Q=0A N ZA for all positive integer

m. Suppose that there exists a monomial w such that 7 (w) = t?». It then follows
that the binomial " = xju'x}" — xw belongs to I4. Since Iy = (f) and xju'x}" is
divided by neither x%u/ nor x%v/ , we have f’ = 0. Hence x, must divide u’, which
is a contradiction. Thus, a,, does not belong to Z>oA for all m > 0 and hence A is

not very ample. O

Theorem 4.42 Given a configuration A € Z4*" and its Lawrence lifting A(A), the
following conditions are equivalent:

(i) A is unimodular;

(i) A(A) is unimodular;
>iii) A(A) is normal.
(iv) A(A) is very ample.

Proof First (ii) = (iii) = (iv) is known (Theorem 4.11). Second (i) < (ii) follows
from Theorem 4.35 and Lemma 4.38.

Now, in order to prove (iv) = (i), suppose that A is not unimodular. Then there
is a circuit f = x® — xP € I, such that either x* or x is not squarefree. Thus in
the circuit % = x®y? — xPy? none of the monomials x®y® and xPy? is squarefree.
Let, say, var(f) = {x1, x2, ..., x,} and B the subconfiguration of A consisting of
the column vectors ay, ap, ..., a,,. Since

Var(fn) = {xl’x23""x1’rh yl» y2,,ym}
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and since
A(B)z(al 32"'am0 0 ---0 >’
el e ---¢, e €€y

by using Lemma 4.41, the Lawrence lifting A(B) cannot be very ample. Since A(B)
is a combinatorial pure subconfiguration (Example 4.39) of A(A), it follows from
Lemma 4.40 that A(A) cannot be very ample, as desired. O

Problems

4.14 Show that every integral polytope of dimension 2 is unimodular.

4.15 Let 2 C R? denote the integral polytope of dimension 3 with the 8 vertices
(€1, €2, €3), where each ¢; € {0, 1}. Show that & cannot be unimodular.

4.16 Show that there exist configurations A, B, and C such that €y = %4 # 9r 4,
ch 75 %B = g”B, and CKC 75 %C ;ﬁ grc.

Notes

The study of convex polytopes originated in the Euler’s formula v — e + f = 2 of
convex polytopes of dimension 3. On the other hand, the study of integral convex
polytope might originate in Pick’s formula, which is a formula to compute the area
of an integral convex polygon by counting integer points contained in the polygon.

Griinbaum’s book [85] is the fundament on classical theory of convex polytopes,
where rich references contributing to the development of convex polytopes are
listed. Ziegler [221] presents a wealth of material on the modern theory of convex
polytopes. A quick introduction to the theory of convex polytopes is Brgndsted [19],
which invites the reader to the three highlights of convex polytopes known as Dehn—
Sommerville relations (1927), the upper bound theorem (McMullen, 1970), and the
lower bound theorem (Barnette, 1973).

In 1975, arevolution of convex polytopes occurred. Richard Stanley [194] proved
the upper bound conjecture for spheres affirmatively by using commutative algebra,
viz., the Reisner’s theorem [177] on Cohen—Macaulay rings. We refer the reader
to Stanley [199], Bruns—Herzog [27], and Hibi [105] for further information. See
also Hochster [116]. Historically the encounter of convex polytopes with Cohen—
Macaulay rings was achieved by Hochster [115]. Furthermore, in 1980, Stanley
[195] and Billera-Lee [16] succeeded in proving the McMullen’s g-conjecture,
which characterizes the f-vectors of simplicial convex polytopes. In particular, in
[195] Stanley employed the theory of toric varieties [48, 152].
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The topics of normal polytopes and unimodular triangulations is one of the high-
lights of the modern theory of integral convex polytopes. The integer decomposition
property is important in the theory of integer programming [188].

There is an integral polytope which possesses a unimodular covering, but no
unimodular triangulation [25]. Regular triangulations were introduced by Gelfand—
Kapranov—Zelevinsky [80] in their study on hypergeometric functions. We refer
the reader to [139] for the information about the geometry of regular triangulations.
Theorem 4.14, which interprets regular triangulations as Stanley—Reisner complexes
by using Grobner bases theory, is due to Sturmfels, as well as Theorem 4.17, see
[201]. In his book [202], Sturmfels develops a systematic study on convex polytopes
in the frame of Grobner bases. Corollary 4.23 is a powerful tool to show that an
integral polytope is normal. Example 4.25 is discovered in [158] and Example 4.28
is discovered in [159, Example 2.2].

The set of circuits for unimodular polytopes was discussed in [204]. Combi-
natorial pure subrings appeared first in Ohsugi—Herzog—Hibi [156]. The definition
of combinatorial pure subrings as given in this chapter is taken from [155], and
differs slightly from the definition in [156]. Theorem 4.42, which characterizes
unimodular Lawrence liftings, can also be found in [156] (without the statement
of very ampleness). This characterization was extended in [12] to lattice ideals by
Bayer-Popescu-Sturmfels. The results on very ampleness are due to [167].
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Chapter 5 ®
Edge Polytopes and Edge Rings oy

Abstract The convex polytopes arising from finite graphs and their toric ideals
have been studied by many authors. The present chapter is devoted to introducing the
foundation on the topics. In Section 5.1, we summarize basic terminologies on finite
graphs. A basic fact on bipartite graphs is proved. The edge polytope of a finite graph
is introduced in Section 5.2. We study the dimension, the vertices, the edges, and the
facets of edge polytopes. In Section 5.3, the edge ring of a finite graph and its toric
ideal is discussed. One of the main results is a combinatorial characterization for the
toric ideal of an edge ring to be generated by quadratic binomials (Theorem 5.14).
The problem of the normality of edge polytopes is studied in Section 5.4. It turns out
that the odd cycle condition in the classical graph theory characterizes the normality
of an edge polytope. Furthermore, it is shown that an edge polytope is normal if and
only if it possesses a unimodular covering (Theorem 5.20). Finally, in Section 5.5,
Grobner bases of toric ideals arising from bipartite graphs will be discussed. In
particular, we show that the toric ideal of the edge ring of a bipartite graph is
generated by quadratic binomials if and only if it possesses a quadratic Grobner
basis (Theorem 5.27).

5.1 Finite Graphs

Let [d] = {1,2,...,d} and ([‘If]) the set of k-element subsets of [d], where d > 1
and 0 < k < d. Let G be a finite simple graph on the vertex set V(G) = [d], where
d > 2,and E(G) = {ey, e, ..., e,}, where each e; € ([‘2”), the set of edges of G.
Recall that a finite graph is simple if it possesses no loops and no multiple edges.
The degree of a vertex i € V(G) is the number of edges e € E(G) withi € e. Let
deg i denote the degree of a vertex i of G.

A subgraph of G is a finite simple graph G’ on V(G') C [d] with E(G’) C
E(G). Given a nonempty subset W C [d], the induced subgraph of G on W C [d]
is the subgraph G|w of G with E(G|lw) = {e € E(G) : e C W}. A spanning
subgraph of G is a subgraph H with V(H) = V(G) = [d].
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A walk of length q of G connecting i € [d] with j € [d] is a sequence of edges

F:({10’11}7{113l2}’7{1(1—1’1(1}) (51)

of G with each iy € [d] for which iy =i and i; = j. A walk may be regarded as a

subgraph of G in the obvious way. An even walk is a walk of even length. An odd

walk is a walk of odd length. A closed walk is a walk of the form (5.1) with ip = i,.
A cycle of length q is a closed walk of the form:

C = (fio, i1}, {ir, iz} .., {ig—1, i0}) (5.2)

with iy #ipforall0 <k < ¢ <g—1.A chordofacycle (5.2)isanedge e € E(G)
of the form e = {ix, iy}, where 0 < k < £ < g — 1, withe & E(C). A minimal cycle
is a cycle with no chord.

If e = {iy,i¢}, where 0 < k <€ <g—1,and & = {iy,ip}, where 0 < k' <
¢’ < g — 1, are chords of a cycle C of (5.2), then we say that e and ¢’ cross in C if
eitherk < k' <€ < & ork’ <k < €' < £ and if either {iy, iy}, {i¢, i} are edges
of C or {ix, iy}, {i¢, iy} are edges of C.

When a cycle C of (5.2) is an even cycle, a chord e = {ig, i¢}, where 0 < k <
£ < g — 1, is called an even-chord if £ — k is odd and is called an odd-chord if £ — k
is even.

Let C and C’ be cycles of G with V(C) N V(C’) = @, then a bridge between C
and C’is an edge e = {i, j} of G withi € V(C) and j € V(C').

A finite simple graph G is connected if, for any two vertices i and j of G, there
exists a walk of G connecting i with j. The connected components of G are the
induced subgraphs Glw,, ..., G|w, of G such that each G|w, is connected with
Wi U---U W = [d] and that one has {i, j} € E(G) ifi € Wy and j € W, with
k # L.

The complete graph on [d] is the simple graph G on [d] whose edges are those
{i, jlwithl <i < j <d.

A finite graph G on [d] is called bipartite if there is a decomposition [d] =
VUV, where V # @, V' # @ and V NV’ = @ such that each edge of G is of the
form {i, j} withi € V and j € V'.

The complete bipartite graph on [d] = V UV’ is the bipartite graph whose edges
are those {i, j} withi € Vand j € V'.

A forest is a finite simple graph with no cycle. A connected forest is called a free.
A spanning tree of a finite simple graph G is a spanning subgraph of G which is a
tree.

Lemma 5.1 A finite simple graph G is bipartite if and only if every cycle of G is
even. In particular, every forest is a bipartite graph.

Proof (Only if) Suppose that G is a bipartite graph on [d] with the decomposition
[d] = UUV.Let C = {{v, va}, {v2, v3}, ..., {vg—1, 4}, {vg, v1}} be a cycle of
length ¢ of G with v; € U. Then, v, € V and vz € U. In general, one has v; € U
if i is odd and v; € V if i is even. Since v, € V, it follows that g is even. This
completes a proof of “Only If” part.
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(If) one can assume that G is connected. Suppose that every cycle of G is of even
length. Let u and v be vertices of G. Let W be a walk of G of length ¢ connecting
u with v and W’ a walk of G of length ¢’ connecting u with v. Since every cycle of
G is even, it follows that ¢ + ¢’ is even. In other words, either (i) both ¢ and ¢’ are
even or (ii) both g and ¢’ are odd.

Now, fix a vertex vg of G. Let U (resp., V) denote the vertices w of G such that
there is a walk of even (resp., odd) length connecting vg with w. Then, UNV = ¢
with vg € U. Let w, w’ € U with w # w’ and with {w, w'} € E(G). Since w € U,
there is an even walk connecting v with w. It then follows that there is a walk of
odd length which connects vy with w’, a contradiction. Thus, {w, w'} ¢ E(G) for
w and w’ belonging to U with w # w’. Similarly, {w, w'} ¢ E(G) for w and w’
belonging to V with w # w’. Hence, every edge of G is of the form {u, v} with
u € Uand v € V. Thus, G is bipartite, as desired. m]

Let G be a finite simple graph on [d] and G’ on [d']. We say that G is isomorphic
to G' if d = d’ and if there is a permutation o on [d] for which

E(G) ={{o(i),0())} :{i, j} € E(G)}.

Let G be the finite simple graph on [d]. A permutation o on [d] is called an
automorphism of G if

E(G) ={{o(®),0()} :{i, j} € E(G)}.

Problems

51

(a) Classify all finite simple graphs on [d], up to isomorphism, with 1 <d < 4.

(b) Classify all finite connected simple graphs on [d], up to isomorphism, with
1 <d=<4

(c) Classify all finite simple bipartite graphs on [d], up to isomorphism, with 1 <
d <4

(d) Classify all finite connected simple bipartite graphs on [d], up to isomorphism,
with 1 <d <4.

(e) Classify all forests on [d], up to isomorphism, with 1 < d < 4.

(f) Classify all trees on [d], up to isomorphism, with 1 < d < 4.

5.2 Let G be the finite connected simple graph on [5] whose edges are those {i, j}
with 2 < |i — j|. How many spanning trees does G have?

5.3 Let G be the finite connected simple graph on [6] whose edges are
{1,2}, {2, 3}, {1, 3}, {3, 4}, {4, 5}, {5, 6}, {4, 6}.

How many automorphisms does G have?
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5.2 Edge Polytopes of Finite Graphs

Let G be a finite simple graph on the vertex set V(G) = [d] and E(G) =
{e1,...,en} the set of edges of G. Let eq,...,e; denote the canonical unit
coordinate vectors of RY. If e = {i, j} is an edge of G, then we define p(e) € R?
by setting p(e) = e; + e;. We write & for the convex hull of the finite set
{ple) : e € E(G)} C RY and call P the edge polytope of G.

Lemma 5.2 One has P N7¢ = {pe) : e € E(G)}. Furthermore, the set of
vertices of P¢ coincides with P N 74,

Proof Let 4 denote the hyperplane of R defined by the equation z+- - -+z4 = 2.
Since each p(e) with e € E(G) belongs to 7, it follows that Z; C . Leta =
(b1, ...,bg) € PgNZ and write o = ZeeE(G) arp(e) witheach 0 < a, € R>g
and with ZeeE(G) a, = 1.If b; > 1,theni € e for all ¢ with a, > 0. Thus, b; = 1.
Since by + --- + by = 2, thereis j # i with b; = 1. Then, j € e for all e with
a, > 0. Hence, e = {i, j}if a. > 0. Thus, « = p({i, j}) € Hg, as required.

Let V() denote the set of vertices of Z. In general, V(L) C {p(e) : e €
E(G)}.If, say,e = {1,2} € E(G) and e & V(Z), then p(e) = (p(e)+p(e"))/2,
where p(¢’) and p(e”) belong to V(L) with e # ¢’ and e # ¢”. Say, 1 & ¢’ and
i € ¢ withi > 3. Then, (p(e) + p(¢))/2 # e| + €;. This contradiction guarantees
that e = {1, 2} belongs to V(). Hence, V(Zs) = P N7, as desired. O

Lemma 5.3 Lete = {i, j} and ¢’ = {k, £} be the vertices of P with e # f. Then,
the line segment [p(e), p(e’)] which is the convex hull of {p(e), p(e)} in R? is an
edge of P if and only if the induced subgraph of G on {i, j} U {k, £} contains no
cycle of length 4. In particular, if e and ¢’ possess exactly one common vertex, then
[o(e), p(e)] is an edge of Pg.

Proof Let G’ denote the induced subgraph of G on {i, j} U {k, £} and & = Pg.
Since .7 is a face of £, the segment [p(e), p(e’)] is a face of P if and only if
[o(e), p(e')] is a face of .Z. If e and f have exactly one common vertex, then .
is a simplex and [p(e), p(e)] is a face of .#. If e and f have no common vertex,
say e = {1,2} and f = {3, 4}, then .# can be regarded as a subpolytope of the
convex hull of {(1,1,0), (1,0, 1), (0, 1, 1), (1,0, 0), (0, 1,0), (0,0, 1)} c R3. It
then follows that [(1, 1, 0), (0, 0, 1)] is a face of & if and only if .% is a simplex.
Moreover, % is a simplex if and only if G’ contains no cycle of length 4. Hence, the
segment [p(e), p(e’)] is a face of P if and only if G’ contains no cycle of length
4, as desired. O

Lemma 5.4 Suppose that G is connected. Then, dim P = d — 1 if G possesses
at least one odd cycle. If G is bipartite, then dim Pg = d — 2.

Proof Let G be connected with at least one odd cycle. Then, one can find a
connected spanning subgraph G’ of G with d edges such that G’ has exactly one
odd cycle and it is a unique cycle of G’. Then, ¢ is a (d — 1)-simplex. Hence,
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dim 2 > d — 1. Since G is lying on the hyperplane of R? defined by the equation
Z1 + -+ z4 = 2, one has dim Z; <d — 1. Thus, dim £ =d — 1.

Let G be bipartite with the decomposition [d] = UUV. Let 54 be the hyperplane
of R? defined by the equation Y icy zi = 1 and J4 the hyperplane of R¢ defined
by ZjeV zj = 1. Then, P C 4 N 5. Thus, dim P < d —2.Let G" be a
spanning tree of G. Then, P is a (d — 2)-simplex. Hence, dim &g > d — 2. As
a result, one has dim &g = d — 2, as required. m]

Lemma 5.5 Let G be a finite connected simple graph on [d] with at least one odd
cycle and H a subgraph of G. Then, F(H) = {p(e) : e € E(H)} C Pg N
74 is a maximal simplex belonging to P¢ if and only if H satisfies the following
conditions:

* H is a spanning subgraph of G;

* H has d edges;

e Every cycle of H is odd;

e Every connected component of H possesses exactly one odd cycle.

Proof Let a subgraph H satisfy the required conditions and Hj, ..., H, the
connected components of H. Then, dim &g, = |V(Hy)| —1for1 < k < gq.
Since dim Zy = g — 1 + >_{_, dim Zy, and since [d] = U]_, V (Hj), one has
dim Py =d — 1. Since |V (H)| = d, it follows that P is a (d — 1)-simplex.
Now, suppose that H is a subgraph of G for which &y is a (d — 1)-simplex.
Then, H must be a spanning subgraph of G with d edges. Let Hy, ..., H, be the
connected components of H. Again, since dim g =g —1+ ZZ:l dim Yy, , one
has dim &y, = |V(H)| — 1for 1 < k < q. Since H has d edges, each Hy is a
spanning subgraph on V (H) with |V (Hy)| edges. In particular, each Hj possesses
exactly one cycle. Since dim &y, = |V (Hy)| — 1, a unique cycle of each Hy must
be odd. O

Lemma 5.6 Let G be a finite connected simple bipartite graph on [d] and H a
subgraph of G. Then, F(H) = {p(e) : e € E(H)} C Pg N 74 is a maximal
simplex belonging to P¢ if and only if H is a spanning tree of G.

Proof 1f H is a spanning tree of G, then H has (d — 1) edges and dim &y = d —2.
Thus, Py is a (d — 2)-simplex. Hence, F(H) is a maximal simplex belonging to
6.

Let H be a subgraph of G and suppose that F(H) is a maximal simplex
belonging to H¢. If H is disconnected with k& > 2 connected components, then
dim Py = (k—1)+(d —2k) =d — 1 —k < d — 3. Hence, H must be connected.
Since H is a spanning subgraph of G with (d — 1) edges, it follows that H is a
spanning tree, as desired. O

Lemma 5.7 Every face of an edge polytope is again an edge polytope. More
precisely, if P is the edge polytope, then each face of Pg is of the form Pg,
where G’ is a subgraph of G.
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Proof Let .F be a face of &g, then . = conv({p(e) : e € E(G)} N .F). Thus,
F = Py, where H is a subgraph of G with E(H) = {e € E(G) : p(e) € F}.
O

A nonempty subset T C [d] is called independent if no edge of G is of the form
e=1{i,jlwithi e Tand j € T.If T C [d]is independent, then we write N(G; T)
for the set of those i € [d] for which there is j € T with {i, j} € E(G).

To find the facets of 2 is of interest. Lemma 5.8 below describes the facets
of Z¢. Since Lemma 5.8 will be never quoted, we refer the reader to [157,
Theorem 1.7] for its proof.

Lemma 5.8

(a) Let G be a finite simple connected graph on [d] with at least one odd cycle
and G’ a subgraph of G. Then, P is a facet of P if and only if one of the
following conditions is satisfied:

e E(G) ={ec EG) :i¢e}, wherei € [d] for which every connected
component of Gq\\(iy has at least one odd cycle.

e E(G)Y={e€EG):enNT#@P}J{ec EG):en(TUNG;T)) =
@B}, where § # T C [d] is independent for which: (i) the bipartite graph
consisting of those edges e € E(G) with e N T # (@ is connected and (ii)
either T U N(G; T) = [d] or every connected component of the subgraph
Ga\(TUN(G:T)) has at least one odd cycle.

(b) Let G be a finite simple connected bipartite graph on [d] = V U V' and G’ a
subgraph of G. Then, P is a facet of P if and only if one of the following
conditions is satisfied:

e E(G) ={e € E(G) : i & e}, where i € [d] for which Graniy is
connected.

o E(GY={e€EG):enNT#P}U{ec EG):en(TUNG;T)) =
A}, where 9 #= T C V is independent for which: (i) the bipartite graph
consisting of those edges e € E(G) with e N T # (@ is connected and (ii)
Ga\(TUN(G;T)) is a connected graph with at least one edge.

Problems

5.4 Let G be the complete graph on [4]. Find the edges and facets of the edge
polytope & and compute the f-vector of Hg.

5.5 Let G be the complete bipartite graph on [5] = V U V/ with |V| = 2 and
|V’| = 3. Find the edges and facets of the edge polytope & and compute the
f-vector of Hg.

5.6 Let G be the finite simple graph on [5] whose edges are those {7, j} with 1 <
i < j < 4together with {4, 5}. Find the edges and facets of the edge polytope .
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5.3 Toric Ideals of Edge Rings

Let, as before, [d] = {1,2,...,d} denote the vertex set and G a finite simple
connected graph on [d] and E(G) = {ey, ..., e,} the set of edges of G.
Let K[t] = K[t1, ..., t4] denote the polynomial ring in d variables over a field

K.If e = {i, j} is an edge of G, then we define u® € K[t] for the quadratic
monomial #;¢;. We write K[G] for the toric ring K[{u® : e € E(G)}] and call
K[G] the edge ring of G.

Let S = K|[x1,...,x,] denote the polynomial ring in n variables over K and
define the surjective ring homomorphism 7 : § — K[G] by setting 7 (x;) = u® for
1 <i < n. The kernel of  is denoted by I and is called the foric ideal of K[G].

Given an even closed walk

I = (6,‘1, €iryeens eizq)

of G with each ¢, € E(G), we write fr for the binomial

q q
fr= nxiZk—l - H'xiZk
k=1 k=1
belonging to /. We often employ the abbreviated notation

)

fr= 50— FO

where

(+) : ( :

+ —_— . -—

r = | |x12k—1’ fr'= | | Xig
k=1 k=1

Lemma 5.9 The toric ideal 1 is generated by all the binomials fr, where I is an
even closed walk of G.

Proof It follows from Theorem 3.2 that every toric ideal is generated by binomials.
Let I, denote the binomial ideal generated by those binomial fr, where I’
is an even closed walk of G. Choose a binomial f = HZ:lxik - HZ:lxjk
belonging to Ig with iy # jp for all k and k. Let, say, w(x;;) = titp. Since
JT(]_[Z:1 X)) = JT(]_[Z:1 xj), one has m(x;,) = nt, for some m with r # I.

Say, m = 1 and r = 3. Thus, 7(x;;) = ft3. Then, w(x;,) = t3t; for some
£ with s # 2. Repeated application of these procedures yields an even closed
walk I = (e,-l, €jis €y Cjyy v Cify, Ejp) with frr = Hlf:l Xiy — l_[]le Xj, €
Ig. Since w([T{_; xi,) = 7([]i_, x;) and since w([Ti_; xi)) = 7(To_; xj0),
one has n(l—[zzp+1xik) = 7t(]—[Z=pJrl xj.). Hence, HZ=p+1xik — HZ:[H-] Xj,

belongs to Ig. Working with induction on ¢ > 2 enables us to assume that
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q T ' ,
[Ti—p1 % — [Ti=p41 Xjx belongs to I Now, one has

q
= 1_[ xlk(l_[xlk l_[xjk)+l_[x]k( 1_[ Xip — 1_[ Xji)

k=p+1 k=1 k=p+1 k=p+1
q p q q
=fr TT s+ [T T x = TT xio-

It then follows that the binomial f belongs to I’G. Hence, I = I, as desired. O

An even closed walk I' of G is called primitive if there exists no even closed
walk I’ of G with frs # fr for which £ divides £ and £ divides £,

Lemma 5.10 A binomial f € I is primitive if and only if there exists a primitive
even closed walk I' of G such that f = fr. In particular, the toric ideal Ig is
generated by those binomials fr, where I' is a primitive even closed walk of G.

Proof 1t follows from the proof of Lemma 5.9 that, for every binomial f = u —v €
I, where u and v are monomials of S = K[x, ..., x,] with deg u = degv, there
is an even closed walk I" of G such that f T D d1v1des u and f T ) divides v. Hence,
every primitive binomial of /g is of the form fr, where I is an even closed walk
of G. It then follows that fr is primitive if and only if I” is primitive.

In addition by Proposition 3.15, I is generated by those binomials fr, where I
is a primitive even closed walk of G. O

Lemma 5.11 A primitive even closed walk I" of G is one of the following:

(i) I is an even cycle of G;

(i) I' = (Cq, Ca), where each of C1 and C» is an odd cycle of G having exactly
one common vertex;

(iii) I' = (Cy, I, Ca, I3), where each of C1 and Cy is an odd cycle of G with
V(C1) N V(Cy) = @ and where I't and Iy are walks of G of the forms I'1 =
(eiyy...,e,)and I = (e,-i, ...,e,-;/) such that I'y combines j € e;; N e, N
V(Cy) with j' € ¢;, N e NV(C2) and T combines j' with j. Furthermore,
none of the vertices belonging to V(C1) U V(C2) appears in each of e;, \
ke oovei e\ e \ ik ey e e, AT

Proof Let I' be a primitive even closed walk
F = (ei| ’ eiza M) eizq) = ({.10’ .]1}7 {J]v ]2}5 ML) {qu—lv .]0})

of G of length 2q. If j; # j¢ for all k # £, then I is an even cycle of G, which is
of the form required in (i).

Let jp # jp forall0 <k <k’ <r <2g—1and jp» = j, forsome0 < k" <r.
Then, I' = (C1, I'’), where C| is a cycle of G with

Cr = s derr }s Ukr st ders2)s - o5 Ur=15 Jr D
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and where I’ is a closed walk of G with

r'= ({jr7 jr+]}7 {jr+l7 jr+2}, cee {quflv jO}’ {jo’ j]}7 s {jk”f]s jk”})~

Since I is primitive, it follows that C; is an odd cycle and I’ is an odd closed walk.
In order to simplify the notation of I" = (Cy, I'’), one can write C1 and I"’ for

Cl = ({jOﬂ jl}s {j17j2}7 MR {jr—l’ ]0})

and

r'= ({j()’ j}’+1}s {].r+1’ jr+2}» cees {qu—ls .]0})
Let (V(C) NV I\ {jo} # 9. Let jo # ja € (V(ICHNVI) withl <a <

r—1and j, = jp withr +1 < b < 2q — 1. Since C is an odd cycle, one of the
walks

I = (o, jids L, 2 - la=1s Jad)

and

I3 = ({Jas Ja1} {Ja+1, Jat2}s - {r=1. Jo})
is odd. Furthermore, since I"’ is odd, one of the walks

I3 = (o, Jr+1 b r1s dra2ds oo =15 Jb)
and

Iy = {{Jps o1} Ub+1s o2} oo o5 L2g—1, Jo})
is odd. In particular, one of the closed walks (I, I3), (I, I4), (I», I3), and
(I», I'y) must be even. This is impossible, since I” is primitive. As a result, one
has (V(Cy) N V(I')) = {jo}. If I’ is a cycle of G, then I is of the form required
in (ii).

Let jo = j. for some r +2 < ¢ < 2g — 2. Since I'’ is an odd closed walk, one
of the walks

FS = ({]09 jr+1}7 {jr-‘rlv jr+2}a DR} {jC—19 ]C})

and

F6 = ({jC’ jC+1}7 {jC+l ’ jC+2}7 RN {qufl ’ .]0})
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is odd. Since C| is an odd cycle, one of the closed walks (Cy, I's5) and (Cy, I) is
even. Again, this is impossible, since I” is primitive. As a result, one has jy # j. for
allr +2<c¢<2q-—2.

Now, suppose that I"” is not a cycle. Then, I'" = (I, I, I'y), where I'y is a walk
of G combining jo with j' € V(I), where Iy is a closed walk of G and where I
is a walk of G combining j’ with jo. Since I" is primitive, it follows that I's must
be an odd closed walk. If Iy is a cycle of G, then I" is of the form required in (iii).
If I3 is not a cycle of G, then repeating the above technique guarantees that I” is of
the desired form in (iii). |

Corollary 5.12 Let G be a bipartite graph. Then, every primitive even closed walk
is an even cycle. In particular, the toric ideal I is generated by those binomials fc,
where C is an even cycle of G.

An even closed walk I" of G is called fundamental if every even closed walk
I"" of the induced subgraph G|y ) of G on V(I") with fr # 0 satisfies either

fr = frorfr=—fr.

Lemma 5.13 Let I be a fundamental even closed walk of G and suppose that the
toric ideal I is generated by fry, fry, ..., fr,, where each fr, is an even closed
walk of G. Then, either fr = fr; or fr = — fr; for some 1 <i <.

Proof Since fr € Ig. there is fr, for which £ divides either fi.* or £,
It then follows that each vertex of I; must belong to V(I"). Hence, I; is an even
closed walk of the induced subgraph G|y ). Thus, fi coincides with either fr. or

—Jr. O

We are now in the position to state a combinatorial criterion for the toric ideal I
to be generated by quadratic binomials.

Theorem 5.14 Let G be a finite connected simple graph. Then, the toric ideal
I is generated by quadratic binomials if and only if the following conditions are
satisfied:

(i) If C is an even cycle of G of length > 6, then either C has an even-chord or C
has three odd-chords e, ', ¢’ such that e and e’ cross in C;
(i) If Cy and Co are minimal odd cycles with exactly one common vertex, then
there exists an edge {i, j} & E(C1) U E(Cy) withi € V(Cy) and j € V(C2),
(iii) If Cy and Cy are minimal odd cycles with V(C1) NV (Cp) = @, then there exist
at least two bridges between C1 and C».

Proof (Only if) Suppose that the toric ideal /g of G is generated by quadratic
binomials. Since every primitive binomial of I is of the form fr, where I" is an
even closed walk of G, it follows that I/ is generated by those quadratic binomials
fc, where C is a cycle of G of length 4.

(i) Let C be an even cycle of length > 6. Since fc € Ig and since I is generated

by quadratic binomials, one can find two quadratic binomials fc, and fc,,

where both C; and C; are cycles of length 4, for which fglr) divides fé‘” and
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(i)

(iii)

fé:) divides fé_). Then, each of Cy and C; yields either two even-chords of
C or two odd-chords which cross in C. If one of these chords is an even-chord,
then C satisfies the required condition. Suppose that each of these chords are
odd-chords. The odd-chords e and ¢’ arising from C; cross in C. Let ¢” and
¢ be the odd-chords arising from C;. Since C; # C», it follows that either
e’ & {e,e'} ore” & {e,e'}). Hence, C has at least three odd-chords two of
which cross in C, as desired.

Let C; and C; be minimal odd cycles of G with exactly one common vertex
and suppose that there exists no edge {i, j} &€ E(C1) U E(Cy) withi € V(Cy)
and j € V(C»). Since the even closed walk I = (Cy, C2) of length > 6
is fundamental, it follows from Lemma 5.13 that I cannot be generated by
quadratic binomials.

Let C; and Cy be minimal odd cycles of G with V(Cy) N V(Cy) = 0
and suppose that there exists no bridge between C; and C>. Since G is
connected, there is a walk I} = ({vg, v1}, {v1, v2}, ..., {vi—1, v;}) of length
t > 2 withvg € C; and v; € C,. One can assume that ¢ is the smallest
length of those walks I', where I" connects a vertex of C; with a vertex of
C,. Let I' denote the even closed walk (Cy, I, Co, —11), where —17 =
(v, vi—1}, ..., {v2, v1}, {v1, vo}). If the induced subgraph G|y r) is equal to
I', then I' is fundamental of length ¢ + 3 > 5. Lemma 5.13 then says that I
cannot be generated by quadratic binomials. Thus, G|y ) # I and there is
anedge e € E(G|y(ry) \ E(I"). Since Cy and C, are minimal odd cycles of G
with V(C1)NV (C2) = @, since there is no bridge between C and C» and since
t is the minimum length, it follows that either e = {i, v1} withi € V(Cy) or
e = {v_1, j} with j € V(C3), say, e = {i, v1} withi € V(Cy). One can find
an odd cycle C3 (# C1) with E(C3) C E(Cy) U {{i, v1}, {vo, vi}} and choose
a minimal odd cycle C4 with V(C4) C V(C3). Since C; is minimal, one has
v1 € V(Cy4). Let I'’ be the even closed walk (Cy, I>, Cp, —I%), where I =
({v1, v2}, {v2, v3}, ..., {vi—1, v;}). Since the degree of the binomial fr is at
least t +2 > 4, again by Lemma 5.13, one has G|y ) # I'" and one can find
an edge ¢’ = {v,—1, j} € E(Glyv)) \ EI™) with j € V(C5). One can then
find an odd cycle Cs (# C») with E(Cs5) C E(C2) U{{v;—1, j}, {vi—1, v¢}} and
choose a minimal odd cycle C¢ with V(C¢) C V(Cs). Since C is minimal,
one has v,_1 € V(Cg). Let I'”" denote the even closed walk (Cy4, I's, Cq, —I3),
where I3 = ({vy, v}, {va, v3}, ..., {vi_o, v, 1}). If t = 2, then I = @.)
Since G|y = I'”, it follows that I'” is fundamental. Since the degree of
frris atleast t + 1 > 3, Lemma 5.13 says that /5 cannot be generated by
quadratic binomials. This contradiction says that there exists a bridge between
C1 and C;. Now, if there exists exactly one bridge b € E(G) between C; and
C», then the even closed walk (Cy, b, C», b) is fundamental of length > 8.
Again, Lemma 5.13 says that /g cannot be generated by quadratic binomials.
Hence, at least two bridges between C; and C, exist.
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(If) By virtue of Lemma 5.10, what we must prove is that, given a primitive even
closed walk I" of G of length 2g > 6, the binomial f belongs to the ideal (/)4
which is generated by the binomials of degree < ¢ belonging to /.

If e is an edge of G, then we write x, for the variable of S = K[x1, ..., x,] with
m(x.) = u® € K[t].

First Step: Let I" be a primitive even closed walk of G of length 2¢ > 6
of the form in (i) of Lemma 5.11. Thus, I" is an even cycle C =

({U], UZ}» {U2, U3}7 MR {U2qa Ul}).

(a) Suppose that C has an even-chord e = {vy, vy} with 2 <t < g. Let C be the
even cycle

) 2ts V24115 2t4+15 V24245 - -« 2g—1>V2q 7, 2¢g, Ul
(e, {var, var41}, {v vor42} {vag—1, v2g}, {v2g, v1})
and C the even cycle

(e, {var, var—1}, {var—1, v2r 2}, ..., {3, v2}, {v2, v1}).

Then, fc = gfc, — hfc, € (g)<q. where g = f&) /xe and h = £ /xe.
(b) Suppose that C has no even-chord and that C has three odd-chords e, ¢/, and
¢’ such that e and ¢’ cross in C. Let e = {vy, v/} and ¢ = {vp, v;41} with

3<t<2q—1.Let
F = ({Uls UI—1}9 {v[—lv Ut—2}, sy {U37 UZ})
and

I = (i1, vigads {vig2, vigshs oo {vag—1, vag ), {vag, Vi),

Let C; = (e, I, e/, I'") and C, = (e, {vs, vr41}, €, {v2, v1}) be even cycles.
Then, fc = fc, — hfc, with h = f{7 /xex.. The binomial fc, is of degree
g and fc, is quadratic. Let ¢” = {v;, v;}, S = {v1, V41, V42, ..., v2g}, and
T ={v2,v3,...,v}. Letv; € Sand v; € T. Since ¢” is an odd-chord of C, it
follows that ¢” is an even-chord of Cy. Hence, fc € (Ig)<q-

Now, assume that each of v; and v; belongs to T with 2 < i < j < t. Let
C3 be a minimal odd cycle with V(C3) € S U {v;} and C4 a minimal odd cycle
with V(C4) C S U {v2}. For a while, suppose that C has no chord {v;/, vj/} with
2 < i’ < j' <t for which either i’ = 2 or j/ = ¢. (Since C has no even-chord, it
follows that {vy, v;} cannot be a chord of C.) Let C5 be a minimal odd cycle with
V(Cs) C {vi, viy1, ..., v;}. Since C3 and Cs are odd cycles with V(C3)NV (Cs) =
4, one can find a bridge b = {vi, v¢} between C3 and Cs. The bridge must be an
odd-chord of C with vy € S and vy € T. Thus, b is an even-chord of C;. On
the other hand, suppose that C has a chord {v, v/} with 2 < j* < t and that C
has no chord {v, v} with 2 < j” < j* < t. Let C¢ be a minimal odd cycle
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with V(Cg) C {v2,v3, ..., vj}. If C4 and Cg have exactly common vertex (= v3),
then one can find a bridge b’ = {vy, vy} between C4 and Cg with vy € S and
ve € T, which is an odd-chord of C. Thus, 4’ is an even-chord of C;. Finally, if
V(Cq4) NV (Ce) = 0, then there exist at least two bridges between C4 and Cg, one
of which is of the form b” = {vyr, vy} with vy € S and vgr € T. Thus, b” is an
even-chord of Cj.

Second Step:  Let I" be a primitive even closed walk of length > 6 of the form in
(@ii) of Lemma 5.11. Thus, L = (Cy, C2), where C; and C» are odd cycles of G
with exactly one common vertex. Let

Cl = ({wv Ul}v {v27 U3}’ R {U2S715 U2.Y}9 {U2S7 w})

and

’ roo / ’ ’
Cr = ({w, vi}, {v3, v3}, ..., {vy,_1, vy ), {vy,, w}).

(a) Suppose that there is an edge e = {v;, v}} of Gwithl <i <2sand1 < j <?2¢.
Let, say, i and j be even. Let I"| be the even closed walk

Fl :({w» vl}v {vlv UZ}, R {Ui—lv vi}v e, {U}, v}+]}7 e {vétfls Uét}s {vétv w})

of G of length i 4+ 2¢ — j + 2 and I> the even closed walk
FZZ({U.}, vi}v {v/lv vé}v MR {v}_la U;'}, ea {via vi+1}a MR {UZSfl’ U2s}v {U2S7 w})

of G of length j +2s —i + 2. Then, fr = gfr, — hfr,, where g = f](‘j)/xe
and h = fl(-T)/xe.

(b) Suppose that none of the edges {v;, v;.} withl <i <2sand 1 < j < 2¢
belongs to E(G). Let, say, e = {v;, w}, where i is even, be a chord of Cy. If

I'n = ({w, v}, {vi, v2}, ..., {vi—1, vi}, e, C2)

and
I = (e, {vi, vig1}, {vig1, viga)s - -, {vas—1, vag ), {vas, w}),

then fr = gfr, — hfr,. where g = £ /xc and h = £ /x,.

(c) Suppose that none of the edges {v;, v}} with1 <i <2sand 1 < j < 2¢ belongs
to E(G). In addition, suppose that none of the edges {v;, w} and {v}, w} with
1 <i<2sand 1 < j < 2t belongs to E(G). Then, either C| or C, cannot be
minimal. If C; is not minimal, then there is a chord e = {v;, v;} with 1 < i <
Jj < 2s. Let C3 denote the odd cycle of G with e € E(C3) C E(Cy) U {e} and
C4 the even cycle of G withe € E(Cy4) C E(C1) U {e}. Let w &€ V(C3). Since
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V(C2)NV(C3) = @, even though each of C, and C3 might not be minimal, there
exist at least two bridges between C» and C3. Thus, in particular, since none of
the edges {v;, v}} with 1 <i <2sand 1 < j < 2¢ belongs to E(G), one can
find a chord {v;, w} of Cj. This contradicts our hypothesis. Let w € V(C3).

Let I = (Cy. C3). Let, sy, x, divides f;" and &7 Let g = £ /x, and

h= f{ /xe. Then, either fr = gfc, — hfr or fr = —gfc, + hfr.

Third Step:  Let I" be a primitive even closed walk of length > 6 of the form in
(iii) of Lemma 5.11. Let I" = (Cy, I, Cp, I3), where

Ci1 = ({v1, v2}, {va, v3}, . .., {vag, vog 1}, {vas 41, V1))
and
Ca = ({v], va}, {v5, v3}, ... {Vhy, Vo 1) V21, V1))

are odd cycles of G with V(Cy) N V(C2) = @ and where Iy and I are walks
of G both of which connect vy with v}. Since there exist at least two bridges
between C1 and Cy, one can find a bridge e = {v;, v//}, say, j/ # 1. Since I' is
an even closed walk of G, the sum of the length of 1] and the length of /> must
be even. When both the length of Iy and the length of I> are odd, one assume
that both i and j are odd. When both the length of I'] and the length of I> are
even, one assume that i is odd and j is even. Let I3 be the even closed walk

(e, v, Vi1 oo (g, vid T v, va)s o {ier, o))

and I the even closed walk

(e, {v}, v}+1},--~,{v§,+1, vih I, {vr, vaggt)s - - {vier, vil).
Th — —h h — (+) dh = (+)
en, fr = 8fny fr,, where g r, /Xean fr3 /Xe. O

Corollary 5.15 Let G be a bipartite graph. Then, Ig is generated by quadratic
binomials if and only if every cycle of G of length > 6 has a chord.

Problems

5.7 Compute the toric ideal of the finite simple graph G on [6] with the edges
{1,2},{2,3}, {1, 3}, {4, 5}, {5, 6}, {4, 6}, {3, 4}.

5.8 Let C the cycle of length 2n on [2r] and G the bipartite graph which is obtained
by adding the edge {1, n + 1} to C. Compute the toric ideal of G.
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5.9 Find the smallest integer d > 1 such that there is a finite simple connected
graph on [d] whose toric ideal /g cannot be generated by quadratic binomials.

5.4 Normality and Unimodular Coverings of Edge Polytopes

Let G be a finite connected simple graph. We say that G satisfies the odd cycle
condition if, for any two odd cycles C1 and C» of G with V(C1)NV(C,) = @, there
is a bridge between C| and C».

Theorem 5.16 Let G be a finite connected simple graph on [d] with at least one odd
cycle and suppose that G satisfies the odd cycle condition. Then, the edge polytope
P possesses the integer decomposition property.

Proof Leta € n % NZ%. By virtue of Lemma 4.10, one can find a subgraph H of
G satisfying the conditions of Lemma 5.5 for whicha € n %y NZ. LetHy, ..., Hs
be the connected components of H and C a unique odd cycle of Hy for 1 <k <.

We write & = Y, gy Gep(e) with each a, € R>g and with 3, () @e = n.
Since

a= Y lalp@+ Y (a—lahoe)

ecE(H) ecE(H)

belongs to Z4, it follows that Y ee £H)(@e — lacl)p(e) belongs to Z4. Thus, if
i € [d]withdegy i =1andi € e, thena, — |a.] = 0and a, € Z>¢. Let H' denote
the subgraph of H obtained by removing all vertices i € V(H) with degy i = 1
and all edges e € E(H) with i € e. Then, ZeeE(H/)(ae — lacDp(e) € 74, If
degy i = landife = {i, j} € E(H), then a, — |a.] = 0. Thus, a, € Zxo. Hence,
repeated applications of such the technique guaranty that, for each edge e € E(H)
which belongs to none of the cycles ¢y, ..., ¢s, one has a(e) € Zxg. Thus

Yo (@ lacple) e 74

ecE(C1)U---UE(Cy)

Since V(Cr) N V(Cy) = ¥ for k # £, it follows that

> (e — lac)ple) € Z¢

ecE(Cy)

for 1 < k < s. Now, since Ci is an odd cycle, it follows that either |a.|] = 0
for all e € E(Cy) or la.] = 1/2 for all ¢ € E(Cg). Suppose that |a.] =
1/2 for all ¢ € E(Cy) and |la.] = 1/2 for all e € E(Cy) with k # L.
Let, say, V(Cy) = {1,2,...,2p — 1} and V(Cy) = {2p,2p + 1,...2q}. Let
E(Cy) = {e1,ez,...,e2p—1} and E(Cy) = {ezp,€2pt1,...,€24}, Where e; =
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{1,2},er = {2,3},...,e09—2 = {2¢ — 2,29 — 1},e29—1 = {2¢ — 1,1} and
where e2, = {2p,2p + 1}, e2p11 =2p+1,2p + 2}, ..., e29-1 = {29 — 1, 2q},
ey = {2q,2p}. Since G satisfies the odd cycle condition, there is a bridge e
between Cy and Cy. Let, say, ¢’ = {1, 2¢}. Then,

—1
1 q
5 X r@=pE)+ Y pler.
ecE(Cy)UE(Cy) j=1

Thus, each & € n PG N Z¢ can be expresses in the form o = ZeeE(G) a.p(e) with
each a, € Z>, as desired. O

Lemma 5.17 Let G be a finite connected simple graph on [d] with at least one odd
cycle. Let H be a connected spanning subgraph which possesses exactly one odd
cycle. Then, the subset F(H) = {p(e) : e € E(H)} of ¢ N 7% is a fundamental
maximal simplex belonging to 7.

Proof 1t follows from Lemma 5.5 that F(H) is a maximal simplex belonging
to Pg. Recall that A(Pg) C Z4t! is the configuration whose column vectors
are those (e; + e;, 1) with {i, j} € E(G). We show that each p(e) with e €
E(G) belongs to ZA(F(H)). Let e = {i, j}. Since H is a connected spanning
subgraph of H and since H possesses an odd cycle, one can find an odd walk
I' = (e1,e2,...,ey1) of H which connects i € ey with j € ez;—1. Then p(e) =
Y2 (= 1)k p(ey), as desired. Tt then follows that ZA(F (H)) = ZA(Zg). O

Lemmas5.18 Let 1 < s < t and G the finite simple graph on V(G) =
{1,2,...,2t} which consists of two odd cycles C and C' with V(C) =
{1,2,...,2s — 1} and V(C") = {2s,25 + 1,...,2t} together with the bridge
e’ = {1, 2t} between C and C'. Let o € P and write o = ZeeE(G) a.p(e) with
each 0 < a, € R and with ZeeE(G) a, = 1. Then, one can assume that a, = 0 for
at least one edge e € E(C) U E(C").

Proof Let E(C) = {ey,ea,...,ex—1} and E(C') = {eas, €2511, ..., €}, where
ei = {i,i+1}forl <i <2s —2,ex-1 = {25 — 1,1}, eny = {2¢,2s}, and
ej ={j—1,j}for2s+1<j<2t.LetW ={1,3,...,25—1,25,25+2,...,2t}.
We then define § > 0 by setting

6 = min({ay : k € W}.

Then, replacing a,, with a,, — ¢ if k € W and with a,, + 6 if k ¢ W and replacing
ap, with a,s + 26 in a given expression for « yields a required expression. O

Theorem 5.19 Let G be a finite connected simple graph on [d] with at least one
odd cycle and suppose that G satisfies the odd cycle condition. Let §2 denote the
set of those maximal simplices F(H) belonging to &g, where H is a connected
spanning subgraph of G with exactly one odd cycle and where F(H) = {p(e) : e €
E(H)} C P N 72 Then, 2 is a unimodular covering of Pg.
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Proof Lemma 5.17 says that each F(H) € £2 is fundamental. Thus, it is suffices
to show that Zg = Upmyen Pu. Let @ € . By virtue of Lemma 4.10, one
can find a subgraph H’ of G satisfying the conditions of Lemma 5.5 for which
o€ Py NZ4. Let H{, ..., H{ denote the connected components of H” and Cy a
unique odd cycle of H; for 1 <k <s.If s = 1,then F(H') € £2. Lets > 1. Let
o = Y gy aep(e) with each a, € R>g and with ), g ae = 1. By using
Lemma 5.18, in the above expression for o, one can replace one of the edges (say,
¢’) belonging to either E(Cy) or E(C2) with a bridge e(c,.c,) between C; and C;.
Let H” denote the subgraph of G obtained from H’ by removing ¢’ € E(H) and by
adding e(c,.c,). Then, H” is a subgraph of G satisfying the conditions of Lemma 5.5
for which o € Py N 74 . Furthermore, the number of connected components of
H" is s — 1. Now, the induction hypothesis guarantees that @ € Urmyeo PH, as
desired. O

Corollary 5.20 Let G be a finite connected simple graph on [d] with at least one
odd cycle. Then, the following conditions are equivalent:

(i) The edge polytope P is normal;

(ii) The edge polytope P possesses the integer decomposition property;
(iii) The edge polytope P possesses a unimodular covering;
(iv) The finite graph G satisfies the odd cycle condition.

Proof First of all, (iii) = (i) and (ii) = (i) follow from Theorems 4.5 and 4.11.
Furthermore, (iv) = (ii) and (iv) = (iii) follow from Theorems 5.16 and 5.19.

To complete our proof, we must show (i) = (iv). Suppose that G fails to
satisfy the odd cycle condition. Choose two odd cycles C and C’ with no bridge.
Let E(C) = {{1,2},{2,3},...,{2s — 2,25 — 1},{2s — 1,1}} and E(C") =
{{2s,2s + 1}, {2s + 1,25 + 2}, ..., {2t — 1, 2¢t}, {2t, 2s}}. Since G is connected
and since C is odd, one can find an odd walk

= {1, i}, {ivs iz}, oo {izp—15 i2p ), {i2p, 2t1)

of G connecting 1 € V(C) with 2t € V(C’).
Again, recall that A(Pg) C 7911 is the configuration whose column vectors are
those (e; +e;, 1)’ with {i, j} € E(G). Leta = e; + e, +--- + ey. Since

1

it Y s

ecE(C)UE(C')
one has o € Q>0A(#). Furthermore, o = Z’j;ll p({2j,2j + 1}) + B, where
2p—1

B=pUL i)+ D (=D olix, itr1) + plizg, 2t)).

k=1
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Fig. 5.1 A graph whose edge
polytope is the polytope in
Example 4.25.

Thus, @ € ZA(Zg). Hence, o € ZA(Pc) N Q>0A(Fc). Since o &€ Z>0A(P ),
it follows that Z>0A(P¢) # ZA(Pc)NQ>0A(L ). Thus, P cannot be normal,
as desired. O

Example 5.21 A normal polytope none of whose regular triangulation is unimodu-
lar given in Example 4.25 is the edge polytope of the graph in Figure 5.1. Hence,
the conditions in Corollary 5.20 are not equivalent to the existence of a regular
unimodular triangulation.

Recall that Z; is called unimodular if every triangulation of & is unimodular.
In order to classify unimodular edge polytopes, we characterize circuits of /.

Proposition 5.22 Let G be a finite connected simple graph. A binomial f is a
circuit of I if and only if there exists an even closed walk I" with f = fr satisfying
one of the following:

(i) I is an even cycle of G;

(i) I' = (Cq, Ca), where each of C1 and C» is an odd cycle of G having exactly
one common vertex;

(i) I' = (Cy, eiy,...,¢€;,,Co,¢€;.,...,€;), where each of C1 and Cy is an odd
cycle of G and where (e;,, ..., e;,) is a path of G which combines j € V(Cy)
with j' € V(Cy) satisfying that V(C1) N V(C2) = @, V{ei,, ..., e, ) N
V(Cy) = {j}, and V{{ei, ..., e, D NV(C2) = {j’}.

Proof Suppose that f is a circuit of Ig. Since any circuit is primitive, there
exists an even closed walk I" with f = fr satisfying one of the conditions in
Proposition 5.11. If I" satisfies none of (i), (ii), and (iii) above, then I" is of the form
I' = (Cy, I, C2, I) satisfying the condition (iii) in Proposition 5.11 and does not
satisfy the condition (iii) above. It then follows that there exists an even closed walk
I'' = (Ci,e,...,6,,Caei,...,e;) satisfying condition (iii) above such that
var(fr+) € var(fr), which is a contradiction.

Let I" be an even closed walk satisfying one of (i), (ii), and (iii) above. By
Lemma 4.30, fr is irreducible. Let H be the subgraph of G with the edge set E(I")
and H’ a proper subgraph of H. Then, each connected component of H' has at
most one cycle and has no even cycle. Hence, there exists no even closed walk I’
satisfying one of the conditions above such that var(fr) C var(fr). Thus, fr is
a circuit of /. |

Proposition 5.23 Let G be a finite connected simple graph. Then, P is unimod-
ular if and only if, any two odd cycles of G have at least one common vertex.
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Proof Let I' be an even closed walk satisfying one of the conditions in Proposi-
tion 5.22. Then, fr is squarefree if and only if I" satisfies either (i) or (ii). Thus,
by Theorem 4.35, & is unimodular if and only if G has no even closed walks of
type (iii) in Proposition 5.22. Since G is connected, this condition holds if and only
if any two odd cycles of G have at least one common vertex. O

Theorem 5.24 Let G be a finite connected simple bipartite graph. Then,

(1) The edge polytope P is unimodular and in particular normal;
(ii) The edge polytope P possesses the integer decomposition property.

Proof Since G has no odd cycles, (i) follows from Proposition 5.23. Now, we show
that 2 possesses the integer decomposition property. Let o € n g N Z¢, where
[d] is the vertex set of G. By using Lemma 4.10 together with Lemma 5.6, one can
find a spanning tree H of G witha € nZy NZ%. Leta = ZeeE(H) a.p(e) with
each 0 < a, € R and with ZeeE(H) a, = 1. Since H is a tree, there is a vertex
i € V(H) with degy i = 1 (Problem 5.10). We then employ the technique which
appear in the proof of Theorem 5.16. If e = {i, j} € E(H) with degy i = 1, then
the subgraph H’ which is obtained by removing e is again a tree. It then follows that
ae € Z>y, as desired. O

Corollary 5.25 Let G be a finite connected simple graph and suppose that the toric
ideal I is generated by quadratic binomials, then the edge polytope P is normal.

Proof If G has at least one odd cycle and if /; is generated by quadratic binomials,
then Theorem 5.14 guarantees that G satisfies the odd cycle condition. It then
follows from Corollary 5.20 that & is normal. If G is bipartite, then Theorem 5.24
says that Z¢ is normal. ]

Finally, Hochster [115] says that every normal toric ring is Cohen—Macaulay. It
then follows that

Corollary 5.26 Let G be a finite simple connected graph and suppose that G
satisfies the odd cycle condition. Then, the edge ring K[G] is Cohen—Macaulay.
In particular, the edge ring of every bipartite graph is Cohen—-Macaulay.

Problems

5.10 Show that every tree possesses a vertex of degree one.

5.11 Find the smallest integer d > 1 such that there is a finite simple connected
graph on [d] whose edge polytope & is not normal.

5.12 Find a unimodular covering of the edge polytope of the complete graph on
[5].

5.13 Find a unimodular triangulation of the edge polytope of the complete bipartite
graph on [5] = VU V' with |[V| =2 and |V’| = 3.
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5.14 Let G be the bipartite graph on [5] with edges
{1,2},{2,3}, {3, 4}, {1, 4}, {1, 5}.

Compute the normalized Ehrhart function of the edge polytope .

5.5 Koszul Bipartite Graphs

It would, of course, be of interest to classify the finite simple graphs G for which
the toric ideal I possesses a Grobner basis consisting of quadratic binomials.
However, to find the complete classification is presumably hopeless. On the other
hand, Theorem 5.27 below says that, for a bipartite graph G, its toric ideal /g
possesses a Grobner basis consisting of quadratic binomials if and only if I is
generated by quadratic binomials.

Theorem 5.27 Let G be a finite connected simple bipartite graph. Then, the
following conditions are equivalent:

(i) Every cycle of length > 6 has a chord;
(i1) The toric ideal 1 possesses a Grobner basis consisting of quadratic binomi-
als;
(iii) The edge ring K[G] is Koszul;
(iv) The toric ideal I is generated by quadratic binomials.

Proof 1t follows from Theorem 2.28 and Proposition 2.23 that (ii) = (iii) = (iv).
Furthermore, Corollary 5.15 says that (iv) < (i). Thus, (i) = (ii) remains to be
proved.

Let G be a bipartite graph on [d] with the partition [d] = U U V. Let U =
{ur,...,ugyand V.= {vy,..., v ). Let A = (a;j)1<i<s,1<j<: be the incidence
matrix of G. In other words, the rows of A are indexed by U and the columns of A
are indexed by V such that ¢;; = 1if {u;,v;} € E(G) and a;; = O if {u;,v;} ¢
E(G). In general, given integer vectors a = (a1, ...,aq) and b = (b1, ..., by), we
introduce the order < defined by setting a < b if the rightmost nonzero component
of the vector a — b is negative. Let §4 = (82, 83, ..., 8s4¢) With § = Ziﬂ:k ajj.
Let ay, ..., a; denote the rows of A. Suppose that ij < i, and a;, < a;,. Let
A’ denote the new matrix obtained by permuting the rows a;, and a;, of A. Then,
84 < 84/. Hence, repeating permutations of rows and columns of A yields the matrix
A” which maximizes § 4». One can then assume that the rows and the columns of A
are simultaneously arranged in the order <. Suppose that A has a submatrix

(ailjl ailjz) — (1 1> - B
Airjy Qiyjp 10
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with iy < i> and j; < j». Since a;; < a;,, there exists an index j3 > j, for which
(@i, j3» airj;) = (0,1) and a;,x = aj,i for all k > j3. Similarly, there exists an index
i3 > i2 for which (a,-3jl, a,-3j2) = (0, l) and Agjy, = dgj, for all £ > i3. If Aiyj3 = 1,
then A has the submatrix

Qi jy Giyjp Giyjs 110
Qi jy Ainjy Ainjy | = | 101
Qi jy Qizjp Aiz 011

This submatrix represents the cycle of G of length 6 with no chord, which
contradicts the condition (i). Hence, a;, j; = 0. Thus,

Qiyji Qi jp Giyjs 110
Qiyjy iyjp Girjs | =101
Qi ji Qizjp Gizj3 010
Since a;, < aj,, there exists an index j4 > j3 for which (aj,j,, aiyj,) = (0,1)

and a;,x = ajy for all k > js. Similarly, there exists an index iy > i3 for which
(@iyjp> aiyj3) = (0,1) and agj, = agj, forall £ > iy. If a;,;, = 1, then A has the
submatrix

iy jy Qiyjy iy jz Qiyjy 1100
Qigji iz jo Ainjs Ainja | _ 1010
Qi ji Qizjy Qizj3 Aisjy 0101
Qiyjy Qigjp Qigjz Qigjy 0011

This submatrix represents the cycle of G of length 8 with no chord, which
contradicts the condition (i). Repeating this argument guarantees that B cannot be a
submatrix of A.

Now, we employ the reverse lexicographic order <py on S = K[{x, : e €
E(G)}] induced by the ordering

{ur, vi} < {ur, v} < ... <{ur, v} <{uz,v1} <{uz,v2} <... < {uz, v}

< ... <{ug,v1} <{ug, v2} < ... < {ug, v}

of edges of G. Every cycle C of G of length 4 appears in A as the submatrix

(i)
(')

with the initial part
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Let Cq, ..., C, denote the cycles of G of length 4. Since (iv) < (i), the toric ideal
I is generated by the binomials fc,, ..., fc, . Inorder to show that { fc,, ..., fc,}
is a Grobner basis of Ig with respect to <y, Buchberger criterion (Theorem 1.29)
can be applied. Let S(fc;, fc;) denote the S-polynomial of f¢, and fc,. If the
initial monomial in< . (f¢,) of fi and in.,,(fc;) of f; are relatively prime, then
S(fc;, fc j) reduces to O with respect to fc,, ..., fc,,. Suppose thatin. ., (fc;) and
inc, (fc;) of fj are not relatively prime.

Let |[E(C;) N E(Cj)| = 2, say, C; = (e1,e2,e3,e4) and C; = (e, e2, es, e6)
withe; < €] < e3 <egandey < e < es5 < eg. Then, S(fc;,, fcj) = x2 fc, where
C = (e4, €3, €5, ¢6) is a cycle of G of length 4. Hence, S(fc;, fcj) reduces to 0
with respect to fc.

Let |[E(C;) N E(Cj)| = 1, say, C; = (e2,e3,e4,e1) and C; = (es, es, €7, 1)
withesy < e < e3 < ey ande; < €] < eg < es. Then, S(fc,, fcj) = fr, where
I' = (e, e3, ea, €7, g, €5) is a cycle of G of length 6. Then, I" appears in A as one
of the following submatrices:

*11 *11 1x1

1«1 ), 11x],|*x11
11x 1%x1 11x
1x1 11 % 11 =%
11x |, x11]),]1x1
11 1x1 11

Each of the above six matrices contains the submatrix

F = ( L ) .
1 a
Since B cannot be a submatrix of A, it follows that @ = 1 and I" has a chord. Let

C’ denote the cycle of G of length 4 which F represents. Then, in._ (fc/) divides
in. ., (fr) and

in_., (fr)

fF - in<rcv (fC’)

fcr = xe fer,

where e € E(I") and C” is a cycle of length 4 of the induced subgraph G g ().
Hence, fr reduces to 0 with respect to f¢r and fcr, as desired. O

Example 5.28 Let G be a graph in Figure 5.2. Then, the toric ideal /5 is generated
by quadratic binomials and coincides with the ideal given in Example 1.18.
Moreover, as stated in Example 2.29, K[G] is not Koszul. Hence, conditions (iii)
and (iv) in Theorem 5.27 are not equivalent for nonbipartite graphs. Note that the
edge polytope & is unimodular by Proposition 5.23.
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Fig. 5.2 A graph whose toric
ideal is the ideal in
Example 1.18.

Problems

5.15 Classify all non-Koszul bipartite graphs, up to isomorphic, with at most 8
vertices.

Notes

Early references on the toric ideal of an edge polytope are [190, 213]. In particular,
Villarreal [213] found a correspondence between generators of the toric ideals
of the edge polytopes and even closed walks of the graphs, see Lemma 5.9. A
characterization of simplices of edge polytopes in terms of graphs appeared in De
Loera—Sturmfels—Thomas [51], see Lemma 5.5. These results are introduced in the
lecture note [202, Chapter 9]. Inspired by such results, the systematic study on the
edge polytope and toric ideal of a finite simple graph originated by Ohsugi—Hibi
[157, 159].

Ohsugi—Hibi [157] proved that the following three conditions are equivalent: (i)
the edge polytope of a graph is normal; (ii) it has a unimodular covering; and (iii) the
graph satisfies the odd cycle condition, see Corollary 5.20. Simis—Vasconcelos—
Villarreal [191] showed (i) < (iii) independently. Note that the odd cycle condition
appeared in a classical paper [77] in graph theory. A normal edge polytope none of
whose regular triangulations is unimodular was given in [158], see Example 5.21.
Ohsugi [154] give a nontrivial infinite series of normal edge polytopes none of
whose regular triangulations is unimodular.

A combinatorial criterion for the toric ideal /g to be generated by quadratic
binomials appeared in the paper [159], see Theorem 5.14. In the paper [160], it was
shown that, for a bipartite graph G, its toric ideal /g has a Grobner basis consisting
of quadratic binomials if and only if /g is generated by quadratic binomials, see
Theorem 5.27. A graph whose toric ideal is generated by quadratic binomials and
whose toric ring is not Koszul is given in [159, Example 2.1], see Example 5.28.
Hibi-Nishiyama—Ohsugi—Shikama [112] give a nontrivial infinite series of finite
graphs with the property that their toric ideals are generated by quadratic binomials
and possesses no quadratic Grobner bases. It is known that the toric ideal of a graph
has a Grobner basis consisting of quadratic binomials if the graph is (i) a complete
multipartite graph [161] (Example 9.27), and (ii) a gap-free graph [47].
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Important sets of binomials in the toric ideals of edge rings were studied by many
researchers. A characterization of circuits of the toric ideals of graphs was given in
[213, Proposition 4.2], see Proposition 5.22. Ohsugi—Hibi [168] characterize the
graphs whose toric ideals are generated by: (i) squarefree circuits, and (ii) circuits
having at least one squarefree monomial. There exist several classes of graphs
whose toric ideals satisfy this condition and whose toric rings are nonnormal. On
the other hand, a characterization of universal Grobner bases was given in Tatakis—
Thoma [208]. Ohsugi—Hibi gave a necessary condition for a binomial to be primitive
(Lemma 5.11) in [159] and discussed indispensable binomials in [162]. Reyes—
Tatakis—Thoma [178] extended these results and characterized primitive binomials,
minimal generators, indispensable binomials, and fundamental binomials in graph
theoretical terms. Ogawa—Takemura—Hara [153] gave another characterization for
primitive binomials.

Other ring-theoretical properties of edge rings were studied in [163] (Goren-
stein), [81, 127, 209] (complete intersection), and [110] (strongly Koszul).

A graph-theoretical characterization of an edge of edge polytopes (Lemma 5.3)
was given in [165]. Using this fact, the combinatorial structure of edge polytopes
was discussed in [165] (simple edge polytopes), [111, 212] (number of edges), and
[109] (separating hyperplanes of edge polytopes).



Chapter 6 ®
Join-Meet Ideals of Finite Lattices Ghock or

Abstract One of the most natural classes of binomial ideals arising from com-
binatorics is the class of join-meet ideals of finite lattices. The purpose of the
present chapter is mainly to study Grobner bases of join-meet ideals. In Section 6.1,
we collect fundamental definitions and basic results on classical lattice theory.
Especially, a complete proof of the characterization of distributive lattices due to
Dedekind is supplied. The algebraic theory of join-meet ideals, which originated in
the study on those ideals of finite distributive lattices, is introduced in Section 6.2.
The highlight is the fact that the join-meet ideal of a finite lattice is a prime ideal if
and only if the lattice is distributive. Furthermore, with respect to a certain reverse
lexicographic order, it is shown that the set of binomial generators of the join-meet
ideal of a finite lattice is a Grobner basis of the ideal if and only if the lattice is
distributive. We then devote Section 6.3 to the discussion of join-meet ideals of
finite non-distributive modular lattices. Furthermore, in Section 6.4, join-meet ideals
of planar distributive lattices will be studied. Finally, in Section 6.5, via the theory of
canonical modules and the a-invariant, projective dimension together with regularity
of join-meet ideals will be discussed.

6.1 Review on Classical Lattice Theory

Recall from Chapter 1 that a partial order on a set P is a binary relation < on P
such that, for all a, b, c belonging to P, one has:

* a < a (reflexivity);
* a <bandb < a = a = b (antisymmetry);
e a<bandb < c = a < c (transitivity).

A set P with a partial order is called a partially ordered set. In combinatorics, a
partially ordered set is often called a poset for short.

Every poset P studied in the present section is finite. A subset C C P is called a
chain of P if C is a totally ordered subset with respect to the induced order. In other
words, a chain is a subset C = {aj,ap,...,ar} of P witha; < ay < -+ < a.
The length of a chain C is |C| — 1. Let rank(P) denote the rank of P, which is the
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maximal length of a chain of P. A subset P’ of a poset P is called a subposet if, for
a and b belonging to P/, one hasa < bin P’ if and only @ < b in P.

Let P and Q be finite posets. A map ¢ : P — Q is order-preserving if, for
a,b e P witha < bin P, one has ¢(a) < ¢(b) in Q. We say that P is isomorphic
to Q if there exists a bijection ¢ : P — Q such that both ¢ and its inverse ¢! are
order-preserving.

Let < be a partial order on a set P. Then, the dual partial order on P is the partial
order <* such that @ < b if and only if b <* a for all a,b € P. The set P with
the partial order <* is called the dual poset of P and is written as P*. One has
(P*)* = P.

A finite lattice is a finite poset L such that, for any two elements a and b
belonging to L, there is a unique greatest lower bound a A b, called the meet of
a and b, and there is a unique least upper bound a V b, called the join of a and b.
Thus, in particular a finite lattice possesses both a unique minimal element Oanda
unique maximal element 1. A subposet L’ of a finite lattice L is called a sublattice
of L if L’ is a lattice and, for a, b € L', the meet of a and b in L’ coincides with
that in L and the join of a and b in L’ coincides with that in L. The dual poset L* of
a finite lattice is again a lattice, which will be called the dual lattice of L. It follows
thatifc =aVvbandc =aAbinL,thenc=aAbandc =a Vv bin L*.

Example 6.1

(a) Let %, denote the set of all subsets of [n], ordered by inclusion. Then, %, is a
lattice, called the boolean lattice of rank n.

(b) Letn > 0be aninteger and &, the set of all divisors of n, ordered by divisibility.
Then, Z, is a lattice, called the divisor lattice of n. Thus, in particular a boolean
lattice is a divisor lattice.

Fig. 6.1 A boolean lattice 12
and a divisor lattice.

1
Bs Dy

A finite lattice L is called distributive if, for all a, b, ¢ belonging to L, one has:

avVbnrc)=(@Vvb)Ar(aVec),

anbvce)=(@Ab)V(aAoc).

Every divisor lattice is a distributive lattice and, in particular, every boolean
lattice is a distributive lattice. Every sublattice of a finite distributive lattice is again
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a distributive lattice. The dual lattice of a distributive lattice is again a distributive
lattice.

Lemma 6.2 Let L be a finite lattice. Then, the following conditions are equiva-
lent:

(i) Foralla,b,c € L,onehasa~ (bAc)=(aVb)A(aVc),
(i1) Foralla,b,c € L, onehasa N (bV c) = (a Ab)V (a A c).

Proof We prove (i) = (ii). Then, since the dual lattice L* is distributive, the
converse (ii) = (i) also follows. Suppose (i) and a, b, ¢ € L. One has:

(a@anb)yv@nc)=(anb)va)A((anb)Vc)
=aAN(cV(aAnb))
=aAn((cva)A(cVb))
=(@An(cVva)A(cVvb)

=aAn Vo),

as desired. O

Lemma 6.2 does guarantee that, for individual elements a, b,c € L, neither
avVibAac)=(aVvb)Aavec)=anbvce)=(@nAnb)Vv(aArc)noran(bvVvc)=
(anb)yv@nc)=avbnrc)=(aVvb)A(aVc). Infact,

Example 6.3 Let L = {(),a,b,c, i} with0) <a <c<1and0 <b < 1. Then,
aN(bVvc) =a = (anb)Vv(anc). However,aV (bAc) = aand (avb)A(aVvce) = c.
Furthermore, in L*,onehasaVv (bAc) =a = (avb)A(aVc),butan(bVvce) =a
and (a Ab)V (a Ac) =c.

Let P = {p1, ..., pn} be afinite poset with a partial order <. A poset ideal of P
is a subset o of P with the property that, whenevera € w and b € P with b < a,
one has b € «. In particular, the empty set as well as P itself is a poset ideal. Let
# (P) denote the set of poset ideals of P. If o and g are poset ideals of P, then
each of the sets @ N B and @ U B is again a poset ideal. It then follows that _¢ (P) is
a finite lattice ordered by inclusion.

Fig. 6.2 A poset and its {a,b,c,d}
lattice of poset ideals.

{a,b,c} {a,b,d}

c d {a,b} {b,d}
N (@) (b
a b
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Furthermore, it follows easily that _# (P) is a distributive lattice whose rank is
equal to | P|. Now, Birkhoff’s fundamental structure theorem for finite distributive
lattices guarantees that the converse is true. In fact,

Theorem 6.4 (Birkhoff) Given a finite distributive lattice L, there is a unique finite
poset P such that L is isomorphic to ¢ (P).

Proof Let L be a finite distributive lattice. An element a € L with a # 0 is called
Jjoin-irreducible if, whenever a = b Vv ¢ with b, c € L, one has either a = b or
a = c. Let P denote the subposet of L consisting of all join-irreducible elements
of L.

We claim that L is isomorphic to _# (P). To see why this is true, we define the
map ¢ : _Z (P) — L by setting p(a) = \/,, @, Where & € _Z (P). In particular,
@) = 0. Clearly, ¢ is order-preserving. Since each element a € L can be the join
of the join-irreducible elements b with b < a in L, it follows that ¢(«) = a, where
« is a poset ideal of P consisting of those b € P with b < a. Thus, ¢ is surjective.

The highlight of the proof is to show that ¢ is injective. Let o and § be poset
ideals of P with @ # B, say, B ¢ «. Let b* be a maximal element of § with b* & «.
We show ¢(a) # ¢(B). Suppose, on the contrary, that ¢(«) = ¢(8). Thus,

\/a: \/b. (6.1)

aeo bep

Since L is distributive, it follows that:

(\/ & ~b*=\/(@anrb".

acxa aex

Since a A b* < b* and since b* is join-irreducible, it follows that (\/ ., a) A b* <

b*. However, since b* € 8, one has:

acoa

(\/b)/\b*: \/(b/\b*):b*.

bep bep

This contradicts (6.1). Hence, ¢ is injective.

Now, the inverse map (p’l is defined as follows: For each element ¢ € L, (p’l (c)
is the set of join-irreducible elements a € L with a < c. Clearly, o) € A2 (P)
and ¢! is order-preserving. As a result, L is isomorphic to # (P) with the bijective
order-preserving map ¢, as desired.

Finally, since P is isomorphic to the subposet consisting of all join-irreducible
elements of the distributive lattice _# (P), it follows that, for two finite posets P and
Q,if #(P) is isomorphic to ¢ (Q), then P is isomorphic to Q. In other words,
the existence of a finite poset P such that L is isomorphic to _# (P) is unique. O
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A finite lattice L is called modular if the following condition is satisfied: If, for
all a, b, ¢ belonging to L, one has:

a<c=aVvbhrc)=(@Vvb)Ac.

Every distributive lattice is modular. In fact, if L is distributive, thena v (b A ¢) =
(@avb)A(aVvce)anda VvV c = csince a < c. Every sublattice of a finite modular
lattice is again a modular lattice.

The dual lattice L* of a modular lattice L is modular. In fact, if a < c in L*, then
¢ <ainL.Thus,in L,one hascV (b Aa) = (c V b) A a. Hence, in L*, one has
cAbvVva)=(cAb)Va.

Example 6.5 Let G be a finite group and L(G) the poset consisting of all normal
subgroups of G, ordered by inclusion. Then, L(G) is a lattice. In fact, if H and H’
are normal subgroups of G, then HH’ and H N H' are normal subgroups of G.
Thus, Hv H = HH' and H A H = H N H'. It is not difficult to show that L(G)
is a modular lattice. Furthermore, L(G) is a distributive lattice if and only if G is a
cyclic group.

Example 6.6 Let F, denote the g-element finite field and V), (q) the vector space
of dimension n over ;. Let L, (q) denote the poset consisting of all subspaces of
Vi (q), ordered by inclusion. Then, L,(q) is a lattice and is modular.

The pentagon lattice Ns is the simplest non-modular lattice. The diamond lattice
Ms is the simplest non-distributive modular lattice.

Lemma 6.7 Let L be a finite modular lattice and a, b, c € L. Then,

anbve)vibar(ecva)=(@Vb)yAbVe)A(cVa),

avbAr)ADBV(cAa)=(@Ab)V ((bAc)V(cAa).
Proof Sincea A (b V ¢) <a < cV a and since L is modular, it follows that:

anbve))viba(cva)={(aNbBVc)Vb)A(cVa)
=bv@anbdve))n(cVva)
=BvayAbve)A(cVa)

=(@avb)yAnbVvc)n(cVa).
Since the dual lattice L* is modular, the second equality follows. O
Lemma 6.8 Let L be a finite modular lattice and a, b, c € L. Let

e=bBAc)V(@an Vo),
f=ra)Vv(bAlcVa)),

g=(@Anb)V(cA(aVDb)).
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Then,

eNf=fArg=grhe=(@Ab)V((bAc)V(cAa), (6.2)
evf=fvg=gve=(@VvbnbVc)A(cVa). (6.3)

Proof 1Tt follows from Lemma 6.7 that

evVf=((bArc)vanbve))Vvcra)Vv (bA(cVa)))
=bArc)vVanbve)VvibAa(cva))V(cAa)
=bArc)vVavbyAn(bvc)yA(cva))V(cAa)
Since each of b A ¢ and ¢ A a is less than or equal to each of a V b, b V ¢, c V a,

the formula (6.3) follows. Furthermore, since L* is modular, the formula (6.2) also
follows. O

Lemma 6.9 In Lemma 6.8, if any two of the elements e, f, g are equal, then
avbnrc)=(@@Vvb)AaVvec), anbvcec)=(anb)V(aAc).
Proof Let, say,e = f. Then,e A f = e Vv f. Hence,
(anb)yvibAc)V(cAha)=(@Vb)yAbVc)A(cVa).
Thus,
an((@anbyv(bArc)VicAna)=aAN({@Vvb)yrbVce)A(eVa)).
We show

aN({(a@aAnb)v(bAnc)Vcna) =(@Ab)V(anc), (6.4)
an(a@avbynbVvc)yNn(cva))=an(bVc). (6.5)

Since (a A b) V (¢ A a) < a and since L is modular, it follows that:

an(a@anb)yv(bAc)V(cAa))
=({((anb)yv(cna)VibArc) ANa
={anb)vicAna)Vv ((bArc)Aa)
=Wanb)yvicrha))ViaAnbAnc)

=(@Ab)yVv(crna)=(aAnb)V(anrc).

Thus, (6.4) follows. Sincea < a Vb anda < c V a, the equality (6.5) follows.
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It follows from (6.4) and (6.5) thata A (b Vv ¢) = (a Ab) V (a A ¢). Since L* is
modular,a vV (b Ac) = (a Vv b) A (aV c) also follows. O

Theorem 6.10 (Dedekind)

(a) A finite lattice L is modular if and only if no sublattice of L is isomorphic to the
pentagon lattice Ns.

(b) A modular lattice L is distributive if and only if no sublattice of L is isomorphic
to the diamond lattice Ms.

(c) A finite lattice L is distributive if and only if any sublattice of L is isomorphic
to neither N5 nor Ms.

Proof Since N5 is non-modular and M5 is non-distributive, the “only if” part of
each of (a) and (b) follows.

Let L be non-modular. Then, there exist a, b, and ¢ belonging to L for which
a<candaVv (bAc) < (aVvb)Ac. Let

L' ={b,avb,brc,aVv (bAc), (aVvb)Ac)
We claim that L' is a sublattice of L which is isomorphic to Ns. Clearly,
bAc<av(bAnc)y<@VvbyAc=<aVbh.
and
(avnrce)vb=avb, ((avb)rc)Ab=bAc. (6.6)

LetbAc=aVv (bAc). Then,a <b Ac.Hence,aV (bAc)=(aV b)Ac,which
contradicts our hypothesis. Similarly, if (a V b) Ac =a Vv b,thena v b < ¢ and,
again, a V (b A c) = (a Vv b) A c. As aresult, one has:

bAc<av((bArc)y<(@vb)Ac<aVb. (6.7)

It follows from (6.6) and (6.7) that b & L’ \ {b}. Hence, L’ is isomorphic to Ns.
Let a modular lattice L be non-distributive. By using Lemma 6.2, there exist
a,b,c € L forwhichan (bvVvc)s#(@Ab)V(anc)Lete, f,g € L be defined
as in Lemma 6.8. Then,e A f = fAg=gAeandeV f = fVvg=gVe.
Furthermore, Lemma 6.9 guarantees that e # f, f # g, and g # e. Hence, the
five-element sublattice L' = {e A f, e, f, g, e VvV f} is isomorphic to Ms.
Finally, (c) follows from (a) and (b). |

In general, we say that an element a of a finite poset P covers b € P ifb < a
and there isno ¢ € P with b < ¢ < a. A finite lattice L is called semimodular if the
following condition is satisfied: If a and b belonging to L cover a A b, thena VvV b
covers both a and b.

Lemma 6.11 Every modular lattice is semimodular.
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Proof Let L be a modular lattice and a, b € L. Suppose that both a and b cover
a A b. If a v b does not cover, say, a, then there is ¢ € L witha < ¢ < a VvV b.
Since L is modular and since a < ¢, one hasa Vv (b A ¢) = (a VvV b) A c. However,
since b Ac =a A b,onehas a Vv (b A c¢) = a.Inaddition, (a vV b) A ¢ = c. Thus,
aVv (bAc)<(avVvb)Ac,acontradiction. |

The centered hexagon lattice D> is semimodular but not modular. Furthermore,
the dual lattice of D, cannot be semimodular.

Since every non-modular semimodular lattice possesses the pentagon lattice Ns
as a sublattice and since N5 cannot be semimodular, it follows that a sublattice of a
semimodular lattice might not be semimodular.

A rank function of a finite poset P isamap p : P — Zxp such that p(a) = 0 if
a is a minimal element of P and that p(a) = p(b) + 1 if a covers b. A rank function
is unique if it exists. For example, the boolean lattice %8, of rank n possesses a
rank function p satisfying p(«) = |«| for each o« C [n]. Furthermore, in general,
every finite distributive lattice L = _# (P) possesses a rank function p satisfying
p(a) = || for each poset ideal @ C P.

A finite poset P is called pure if all maximal chains of P have the same length
(=rank(P)).If a,b € P with a < b, then an interval [a, b] of P is the subposet of
P consisting of those ¢ € P with a < ¢ < b. Every interval of a pure poset is pure.
Every interval of a finite lattice is again a lattice. Every interval of a distributive
(resp., modular, semimodular) lattice is distributive (resp., modular, sesmimodular).

Lemma 6.12 Every pure poset possesses a rank function.

Proof Let P be pure. Given a € P, we write P<, for the subposet {b € P : b < a}
of P. Since P is pure, it follows that P, is pure. Let p(a) = rank(P<,). We claim
p is a rank function of P. Clearly, one has p(a) = 0 if a is a minimal element. Let
a,b € P for which a covers b. Then, rank(P<p) < rank(P<,) — 1. Since P<, is
pure, there is a chain of P of the formag < a; <--- <a,—1 =b < a, wherer =
rank(P<,). Thus, rank(P<;) > rank(P<,) — 1. Hence, rank(P<p) = rank(P<,) — 1.
In other words, one has p(a) = p(b) + 1. O

Lemma 6.13 Ever semimodular lattice is pure.

Proof Let L be a finite semimodular lattice. We show that L is pure by using
induction on rank(L). Let

O<ai<am<---<a<l1l, O<b<by<---<by<l1

be maximal chains of L. We claim k = k’. Since both a; and b; cover 6, it follows
that a; Vv by covers both a; and b;. Let £ = rank([a; V by, i]). Each of the intervals
[ay, i] and [by, i] is a modular lattice containing a; V by whose rank is less than
rank(L). Hence, each of [ay, i] and [by, i] is pure of rank ¢ + 1. Thus, one has
k =k = ¢+ 2, as desired. O

Theorem 6.14 A finite lattice L is modular if and only if L possesses a rank
function satisfying
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p@)+pbd)=pla@anb)+plavb) forall a,belL (6.8)

Proof Let L be a finite modular lattice and p its rank function. By using induction
on rank(L), we show that p satisfies (6.8). Let a, b € L with p(a) + p(b) # p(a A
b) + p(a Vv b). Since every interval of a modular lattice is modular, one can assume
thata A b =0anda v b = 1. In particular, p(a A b) = 0. Let, say, p(a) + p(b) <
p(1). Since L is pure, there is ¢ € L with a < ¢ for which p(c) + p(b) = p().
Since a < ¢ and since L is modular, it follows thata v (b A ¢) = (a v b) A c. Since
avb= i,onehas (avb)Anc=c. Thus,aV (b Ac)=c.Hence, b Ac # 0.
Since rank([b A c, i]) < ranlf(L) anq since [b A c, i] is modular, it follovys that
p)+ pb) = p(b Ac)+ p(1) > p(1). This contradicts p(c) + p(b) = p(1).

Suppose that a finite lattice L is pure and its rank function satisfies (6.8). Let
a,b,c € Lwitha <c.Ingeneral,onehasa Vv (b Ac) < (aV b) A c. Now,

plav (bArc)=pa)+pbArc)—planbnc)
= p(a)+ pb) + plc) —pb V) —planbnc)
= p(a) + p®b) + pc) —pdVec)—planb),
p((avb)yrnc)=plavb)+plc)—plavbyVvc)
= p(a) + p(b) — pla Ab) + p(c) —plaV b Vo)
= p(a)+ pb) — planb)+ p(c) — p(b Vo).

Hence,a Vv (b Ac) = (a Vv b) A c, as required. |

Problems

6.1 Letl < p; < pp < --- < p, be prime numbers and n = p1p3 --- ps. Show
that the boolean lattice of rank s is isomorphic to the divisor lattice of n.

6.2

(a) Show that every divisor lattice is distributive.

(b) Find a distributive lattice which is isomorphic to no divisor lattice.
(c) Is every sublattice of a boolean lattice again a boolean lattice?

(d) Is every sublattice of a divisor lattice again a divisor lattice?

6.3 Let P ={a,b,c,d, e} be afinite poset withb < d,b < e,c <d,c < e. Find
the distributive lattice _# (P).

6.4

(a) Find a finite poset P with 7 (P) = %;.
(b) Find a finite poset P with ¢ (P) = 2.
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6.5 Let G be a finite group and L(G) the finite lattice consisting of all normal
subgroups of G, ordered by inclusion.

(i) Show that L(G) is a modular lattice.
(i1) Show that if L(G) is a distributive lattice, then G is abelian.
(ii1) Using (ii) show that L(G) is a distributive lattice, if and only if G is a cyclic
group.

6.6 Let L be a ﬁmte lattice. An element a € L is called an atom if a covers O
i.e., 0 <aand0 < b < afornob € L. A finite lattice L is called atomic if
every element is a join of atoms. A geometric lattice is a finite semimodular atomic
lattice.

(i) Show that every boolean lattice is a geometric lattice.
(i) Show that the finite lattice L, (q) of Example 6.6 is a geometric lattice.
(iii)) Show that a finite distributive L lattice is atomic if and only if L is boolean.

6.7

(a) Find a rank function of a boolean lattice.
(b) Find a rank function of L, (g).
(c) Find a rank function of a distributive lattice.

6.2 Grobner Bases of Join-Meet Ideals

Let L be a finite lattice and K be a field. Let K[L] = K[{x, : a € L}] denote the
polynomial ring in |L| variables over K. Given a and b belonging to L, we introduce
the binomial ideal f, , € K[L] by setting:

fa,b = XaXb — XarbXavb-

In particular, f,, = O if and only if @ and b are comparable in L. The join-meet
ideal of L is the ideal I;, C K[L] which is generated by those binomials f, ;, with
a,be L.

Example 6.15 The join-meet ideal of the pentagon lattice N5 of Figure 6.3 is
generated by fup = xgxp — xgx; and fep = xcxp — xgx;. The join-meet ideal
of the diamond lattice M5 of Figure 6.4 is generated by f,p = Xxsxp — X
fb,c = XpXc — X§Xq» and fc a = XcXa — XgXq-

0t

A monomial order < on K[L] is called compatible if, for all a, b € L for which
a and b are incomparable, one has in< f; 5 = X4Xp.

Example 6.16 Let < be a total order on the variables of K[L] with the property
that one has x, < x, if a < b in L. In combinatorics, such a total order is called
a linear extension of L. Let <., denote the reverse lexicographic order induced by
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the ordering <. It then follows that <y, is a compatible monomial order on K[L].
We call <y a rank reverse lexicographic order on K[L].

Theorem 6.17 Let L be a finite lattice and fix a compatible monomial order < on
KI[L]. Let ¢4, denote the set of binomials f, 1, € 11, for which a and b belonging to
L are incomparable. Then, the following conditions are equivalent:

(1) 9L is a Grobner basis of I, with respect to <.
(i1) L is a distributive lattice.

Proof Suppose that a finite lattice L is not a distributive lattice. By virtue of
Theorem 6.10, it follows that L contains either the pentagon lattice N5 or the
diamond lattice Ms. Work with the same notation a, b, and ¢ as in Figures 6.3
and 6.4. It then follows from Example 6.15 that the initial monomial of the S-
polynomial S(fsp, fp,c) € I is of the form x.xrx,, where {e, f, g} is a chain
of L of length 2. Thus, none of the monomials x.x 7, X rxg, Xg X, can belong to the
monomial ideal ({in<(f) : f € ¥4.}). Hence, ¥, cannot be a Grobner basis of I,
with respect to <.

Now, suppose that L is a distributive lattice. We claim that Buchberger’s criterion
guarantees that ¢, is a Grobner basis of I; with respect to <. Let a, b, ¢ € L with
b # c, where a and b are incomparable in L and a and ¢ are incomparable in L.
Then,

S(fa,ba fa,c) = xcfa,b - xbfa,c

Xp(XancXave) — Xc(XanbXavh)

(fh,a/\c + xa/\b/\cxbv(a/\c))xaVC - (fc,aAb + xa/\b/\cxcv(a/\b))xavb

= xaVCfb,a/\c - xa\/bfc,a/\b + xa/\b/\c(xhv(aAc)xaVC - xcv(a/\b)xa\/b)

Furthermore,
Xbv(anc)Xave — Xev(anb)Xavb
= (fov(anrc),ave F+ Xbvanc) Alave)X(bvanc)viave))
- (fc\/(a/\b),a\/b + x(cv(aAb))A(avb)x(cv(aAb))v(avb))-
Now,

X(bv(anc)Aave)X(bV(anc))Vviave) — X(cv(anb))Alavb)X(cv(anb))V(avb)
= X(bV(anc))Aavec)Xavbve — X(cv(anb))A(avb)Xavbve

= Xavbve X(bvane))atave) = X(evianb))Alavh))-
Since L is distributive, it follows that

bv@anc)AN@vey=@vbyArbve)A(cva)=(cV(aAb)) A(aVDb).
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Hence, the binomial
Xbv(anc)Xave — Xev(anb)Xavb

reduces to 0. Thus, S(f, b, fa,c) reduces to 0, as desired. O

Let P = {p1,..., pn} be a finite poset and L = _Z (P) the finite distributive
lattice which consists of all poset ideals of P, ordered by inclusion. Let § =
K[x1, ..., x,, t] the polynomial ring in n+-1 variables over a field K withdegs = 1.
Given a poset ideal o« C P, we introduce the monomial u, € S by setting:

Ug = (1_[ Xi)t.

pica

In particular, ug = t and up = x1x3 - - - x,t. Let Zg[L] C S denote the toric ring
which is generated by those monomials u, with @ € _Z (P). We then define the
surjective ring homomorphism 7 : K[L] — Zk[L] by setting 7 (xq) = u, for all
a € L= _¢(P).LetKer(r) denote the kernel of 7.

Lemma 6.18 One has I;, C Ker(m).
Proof Leta,f € L= _#(P).Then,a A =aNPanda Vv p =aUpB. Thus,

uarptiavp = [ xC [ 0

picanp pieaUp

= ([T xo(J ] x0¢?
pi€ Di€B

= UglUpg.

Thus, 7 (xoxg) = 7 (xeapXavp). Hence, I C Ker(mr), as required. O

Theorem 6.19 The set 9y of binomials is a Grobner basis of Ker(;w) with respect
to a compatible monomial order <.

Proof A basic technique by using Theorem 1.19 can be applied. Let in_ (¢, ) denote
the set of initial monomials in(fy,g) with fy g € ¥;. Thus, in.(¥7) consists of
those quadratic monomials x4 xg with &, 8 € L such that o and 8 are incomparable
in L. Let in- (Ker(;r)) denote the initial ideal of Ker(sr) with respect to <. It then
follows from Lemma 6.18 that (in.(¥41)) C in.(Ker()).

Let & denote the set of those monomials w € K[L] with w & (in-(¥.)) and
%' that of those monomials w € K[L] with w ¢ in.(Ker(w)). Theorem 1.19
guarantees that %’ is a K-basis of Zg[L] = K[L]/Ker(x). Since ' C A, in
order to show (in-(¥;)) = in-(Ker(sr)), it suffices to prove that £ is linearly
independent in Zg[L] = K[L]/ Ker(r).

Now, what we must prove is that, for w, w’ € % with w # w’, one has 7 (w) #
7 (w"). It follows that:
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/
W = Xq Xgy ** Xaps W = XBXB, = X
where

<o <---=Zap f1=<P=<---=ph

in L. In order to show 7 (w) # 7 (w’), one can assume that p = ¢ and «; # f; for
all i and j. Let oy ¢ Bi. Then, there is ps € P for which ps € ay and pg & Bi.
Since each «; and B; is a poset ideal of P and since

a1 Cap C--Cap, piChC--Chy

as subsets of P, it follows that ps € o; forall 1 <i < p. Hence, xg appears in
m(w). However, since ps & Bi, the power r for which xg appears in 7 (w’) is at
most p — 1. Hence, 7 (w) # 7 (w’), as desired. |

The proof of Theorem 6.19, which is based on Theorem 1.19, supplies a some-
what surprising proof of (ii) = (i) of Theorem 6.17 without using of Buchberger’s
criterion.

Since, in general, a Grobner basis of an ideal is a set of generators of the ideal
(Corollary 1.16), it follows from Theorem 6.19 that:

Corollary 6.20 Let L be a finite distributive lattice. Then, the set 9y of binomials
is a system of generators of Ker(r). In particular, I; = Ker(i).

Theorem 6.21 Given a finite lattice L, the following conditions are equivalent:

(1) I is a prime ideal;
(i) L is a distributive lattice.

Proof Since every toric ideal is a prime ideal, it follows from Corollary 6.20 that 17,
is prime if L is distributive.

Let L be finite lattice which is not distributive. By virtue of Theorem 6.10,
that L contains either the pentagon lattice N5 or the diamond lattice M5. Work
with the same notation a, b, and c as in Figures 6.3 and 6.4. It then follows from
Example 6.15 that, even though x;, ¢ I; and x, —x. & I1,, one has x;(x, —x.) € I
Thus, I;, cannot be a prime ideal. m]

Fig. 6.3 The pentagon
lattice.
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Fig. 6.4 The diamond

lattice.

Ms; = a c

Problems

6.8 Compute the join-meet ideal of the centered hexagon lattice D, of Figure 6.5.

Fig. 6.5 The centered
hexagon lattice.

D,

6.9 Work with the same notation as in the paragraph just before Lemma 6.18. Let
P=PU {0 1} where 0 < pi < 1for 1 <i < n.An order-reversion map on P is
amapo P - {0, 1,2, ...} for which 0(1) = 0 and o(a) <o()ifa > bin p.
Let .Q(P) denote the set of order-preserving maps on P. Given an order-reversion
map o on P, we introduce the monomial wy € S by setting:

n ~
— Hx;T(Pi)tG(O).
i=1

Show that the set of monomials {w, : o € .{2(13)} is a K-basis of Zk[L].

6.10 By using the result of Problem 6.9, show that Z[L] is normal.

6.3 Join-Meet Ideals of Modular Non-distributive Lattices

We now turn to the problem of characterizing modular non-distributive lattices in
terms of initial ideals of join-meet ideals.

Lemma 6.22 Let L be a finite modular non-distributive lattice. Then, L possesses a
sublattice L' = {x, a, b, ¢, y} which is isomorphic to the diamond lattice M5, where
x < a,b,c <y, for which p(y) — p(x) = 2, where p is the unique rank function
of L.
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Proof Since L is a modular non-distributive lattice, it follows from Theorem 6.10
that there exists a sublattice L = {x, a, b, ¢, y} of L withx < a, b, ¢ < y which is
isomorphic to the diamond lattice M5. Suppose that p(y) — p(x) > 2. One can then
assume that thereis e € L withx < e < ¢ < y.Clearly,a Ae =a Ac = x and
avVe<avc=y.Ifave =y,then L possesses a sublattice {x, a, c, e, y} which is
isomorphic to the pentagon lattice Ns. However, since L is modular, Theorem 6.10
says that L cannot possess a sublattice which is isomorphic to Ns5. Hence,a Ve < y.
Let f = a Vv e and L the sublattice {x, a, b, f, y} of L. Then, b v f = y. Again,
since L cannot possess a sublattice which is isomorphic to Ns, one has b A f > x.
Let g = b A f. Let L3 be the sublattice {x,a,e, g, f}.Onehasang =a ne =
e A g = x and, since L is modular with a < f, it follows that:

avg=av(bAaf)=@VvbAf=Ff

Furthermore, a A e = f.If e v g = f, then L3 is a sublattice of L which is
isomorphic to the diamond lattice Ms with p(f) — p(x) < p(y) — p(x).

Leth = eV g < f and L4 the sublattice {x, a, g, h, f} of L. Since a < f, one
has:

avg=avbnf=@VbAf=TFf

If a Ah = x, then L possesses a sublattice which is isomorphic to N5. Thus,a Ah >
x.Letk = a A h and Ls the sublattice {x, e, g, k, h} of L.Onehaseng =enk =
g Nk = x. Again, since L is modular, it follows that:

evk=ev(anh)y=(eva)Ah=h,
gvVk=gvanh)y=(gva)rh
=@VvVbANf)Ah=(aVvD)ANfYAh=fAh=h.

Hence, Ls is a sublattice of L which is isomorphic to the diamond lattice M5 with
p(h) —p(x) < p(y) — p(x).

Continuing these constructions yields a desired sublattice of L which is isomor-
phic to the diamond lattice Ms. O

Theorem 6.23 Let L be a finite non-distributive modular lattice. Then, for an
arbitrary monomial order < on K[L), the initial ideal in. (1) of the join-meet
ideal Iy, of L cannot be squarefree.

Proof Let L' = {&,a,b, c, ¢} be a sublattice of L with & < a, b, c < ¢ and with

0(¢)—p (&) = 2 such that L' is isomorphic to the diamond lattice M5 (Lemma 6.22).

Letay, ..., ar be the elements of L, where k > 3, such that, foreach 1 <i < j <k,

one hasa; Aaj = & anda; Va; = ¢. Hence, in K[L]/I;, one has XajXa; = XgX¢ for

1 <i < j < k. Let < be an arbitrary monomial order on K[L] with x,, < x4, <
© < Xy
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(First Step)  Suppose that xzx; < Xa; Xa, forall 1 <i < j <k.Leta = a; and
f=xex2x; — xgx?. We claim f € Ir. In fact,

[ =xa(xa(xexs — Xg,Xay) + Xay (Xay Xa — XeXp)) + XeXp (XgyXg — XeXg).

Letin. (/1) be squarefree. Since f € I, one has xgx,x; € in.(Ir). Thus, there
is a binomial / belonging to the reduced Grobner basis of 17, with respect to < for
which in_ (k) divides x¢x,x;. Hence, there is a binomial g = xzxqx; —u € I,
with g # 0, where u is a monomial of degree 3 with in.(g) = xgx,x;.

Let g = Zévzlqugq, where g, = v, — w, with v, = Xeg Xl and wy, =
XegnehXe el Let xp,v1 = xgxqox; and Xb,Wg = Xb,, Vg+1 forl < g < N.
A crucial fact is that, for each variable x5 appearing in Xb, 8, ONE has § € [, ¢].
We observe that if ¢; and c; belong to [&, ¢], then ¢4 A ¢; and ¢4 V ¢, belong
to [€, ¢]. Since xp,v1 = xgxox; and Xb,Wg = Xb,  Vg+1 for1 < g < N, the
observation guarantees that, for each variable xs appearing in xp, g4, one has
8 € [&, ¢]. In particular, u = x4, wy is a monomial consisting of those variables
xs with é € [€, ¢], say, u = x¢x;,x,. Since u = Xy Xey nchyXeyvely s it follows that
£ = m = n cannot occur. Furthermore, since Xb, Wg = Xb, 1 Vg+1 forl <g <N,
by using (6.8) one has:

q+1

p&) + p(a)+p) = pl) + pim) + p(n).

Since p(¢) — p(€) = 2, it follows that:

p) + p(m) + p(n) =3p(§) + 3. (6.9)

Let p(£) > p(m) > p(n). We then claim that p(n) = p(&). Let p(n) > p(&).
Then, by using (6.9) one has p(¢) = p(m) = pn) = p(§) + 1. Hence,
each of £, m, n belongs to {ay, ay, ..., ar}. It then follows that ¢ = xex,x; —
XapXa, Xa,- Since £ = m = n cannot occur, one has, say, p # p’. Since
XgXy < XgXa, forall 1 < i < j < k and since x,» =< xg, it follows
that xgx,x; < XayXay Xa which contradicts in.(g) = xgx4x;. This shows
pn) = pé).
Since p(n) = p(&), it follows from (6.9) that p(£) + p(m) = 2p(&) + 3. Since
pE)+2 = p(l) = p(m) = p(§),one has p(f) = p(§)+2and p(m) = p(§)+1.
We then have g = xgxqx; — X Xa; Xg with 1 < ip < k. Since a;, < a; = a, it
follows that xgx,x; < X Xa; Xg s which again contradicts in. (g) = xgx4X;.
(Second Step)  Suppose that there exist | < i < j < k with xgx; > Xg,Xq;-
Let x,/x, be the smallest monomial with respect to < among those monomials
Xa;Xa; with 1 < i < j < k. In particular, one has xgx; > x4x,7. We claim

xaz/xa” - Xa/xg,/ € I. In fact,

2 2
XpXar — Xg/Xon

= (xa/ — xa//)(_xa/xa// — _X£_X§-) bl xa/(_xa///xa// bl )C&-_x;) —|— _xa//(_xa/_xa/// — _Xs_x;),
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where a”’ € {ay, ..., ar} \ {a’, a"} is arbitrary. Let in_ (I;) be squarefree. Then,
XgXqr € inc(Ip). Hence, there is a binomial g = x,x,7 — x¢x,, € I with
in.(g) = xgxyr. Since xgx; > Xy X4, one has x¢x, # xex;. It then follows
that x¢x,, = Xa; Xa, for some 1 <i < j < k. However, the choice of x,/x,” says
that x4, xq; > Xg'Xg7, Which contradicts in<(g) = xu/x4". |

Example 6.24 Let Ms = {&, a, b, c, ¢} be the diamond lattice with & < a, b, c <
¢. Let <purelex denote the pure lexicographic order induced by the ordering x, >
Xe > Xp > Xxc > x; of the variables. Then, the reduced Grobner basis of the
join-meet ideal Iy with respect to <purelex consists of fy p, fb,c, fe,a together with

xgxc - xbxf,.

Example 6.25 Let Ns = {&, a, b, c, ¢} be the pentagon lattice withé <a < b < ¢
and £ < ¢ < ¢, which is a non-modular lattice. We claim that, for an arbitrary
monomial order <, the initial ideal in_ (/) is squarefree. Let I = Iy, = (f, g),
where f = x4xc — x¢x; and g = xpx. — xgx. Since the dual lattice N5* is again
N5, the following three cases arises:

(1) XgXe < XpXe < XgXg,
(i) XgXe < XgXp < XpXc,
(iil) xgx; < XgXe < XpXe.

In (i), the S-polynomial S(f, g) is f — g = —xpx, + xgxc. Since in (S(f, g)) <
in.(f) and in.(S(f, g)) < in-(g), the S-polynomial S(f, g) cannot reduce to 0
with respect to {f, g}. Let h = —S(f, g). Then, Iy, = (f, h). Since xgx; and
xpx. are relatively prime, it follows that { f, i} is the reduced Grobner basis of 1. In
(i), the initial monomials of f and g are relatively prime, it follows that {f, g} is a
Grobner basis of 1. In (iii), the S-polynomial S(f, g) is h = xgxgx; — xpXxg X, . Since
XgXe < XpXc,onehas x, < xp. Thus, in (h) = xpxgx;. Since S(g, h) = xgx; f and
since the initial monomials of f and g are relatively prime, it follows that { f, g, i}
is a Grobner basis of I with respect to <.

Recall from Problem 1.8 that if there is a monomial order < on K[L] such that
the initial ideal in- (/1) is squarefree, then I is a radical ideal.

Example 6.26 Since the diamond lattice M5 = {£,a,b,c, ¢} with & < a,b,c <
¢ is a non-distributive modular lattice, it follows from Theorem 6.23 that, for
an arbitrary monomial order <, the initial ideal in. (/) cannot be squarefree.
However, Iy is a radical ideal. In fact, the primary decomposition of Iy is

IM5 = (xXq — X¢, Xp — X¢, _xCZ —|-)CSX§)
N(Xa, Xpy Xg) N (Xp, Xey X) N (Xe, Xa, Xg)
N(xg, Xq, Xp) N (Xg, Xp, Xe) N (Xg, X, Xg)

Each of the ideals appearing in the right-hand side of the above primary decompo-
sition of Iy is a prime ideal. It then follows that 7 is a radical ideal, as required.
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Example 6.27 Let L be the non-distributive modular lattice of Figure 6.6. We show
that the join-meet ideal /7 of L is not radical.

Fig. 6.6 A non-radical J
modular lattice.

In K[L]/IL, one has:

2 2 2
XaXeXg(Xqg — Xf)° = XqXeXgXj — 2XqX¢XgXqX f + XaX¢XgXf
2 2
= XgXgXpXd — XaXgXpXf — XqXgX f (XgXp — Xxgxf)
2
= xaxgxh (xd — Xf) - xangfo (xd — Xf)

2 2
= xaxgxh(xd — Xf) - xaxexc(xd — Xf).
Furthermore,
XaXn(Xg — Xf) = xp(XgXe — XcXp) + (X f — Xg) (XpXe — XaXp) — Xp(XeX f — XeXp)

and x¢x.(xq — xy) belong to I . Hence,

(Xaxexg (g — X £))? = (XaXexg) (XaXpXg) (xa — x 7)) € I1.

It then follows that x,x¢xg(xg — x¢) € +/IL. Now, with respect to the reverse
lexicographic order <.y induced by x, > x5, > - - - > x, the reduced Grobner basis
of Iy consists of the binomials
XgXp — XdXg, XfXg — XcXg, XeXg — XcXg, XeXf — XcXp, XdXf — XcXp,
XpXf — XaXh, XdXe — XcXp, XbXe — XaXh, XbpXe — XaXd,
XeXeXp — XX fXg, XeXdXg — XeXfXg, XcXeXh — XX fXp,
XaXeXh — XaX fXh, XcXdXh — XcXfXh, XaXdXh — XaX fXp,

xcszcxg — xcthxg, xax[%xz — XgXcXpXg, xcszcxh — x?xfl, xaszcxh — xaxcx,%.
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Let I; = «/Ir. Then, XaX¢Xg(xq — x ) € Ir. Hence, its initial monomial x,x¢xgx4
belongs to in, (I1,). However, the initial monomial of none of the above binomials
divides x,x¢xgx4. Thus, x,x¢xgxs cannot belong to in.  (/1). Hence, I} # VI
and [; cannot be radical, as desired.

Problems

6.11

(a) Find all possible initial ideals of the join-meet ideal of Ms, the diamond lattice.
(b) Find the universal Grobner basis of the join-meet ideal of Ns, the pentagon
lattice.

6.12 In Example 6.26, show that the ideal (x, — x,, xp — X, —xf +XxgX;) is a prime
ideal.

6.13 Let N = {&,a,b, c,d, ¢} be a non-modular lattice with & < a < b < ¢ and
& < ¢ <d < ¢.Is the join-meet ideal of N radical?

6.4 Join-Meet Ideals of Planar Distributive Lattices

A finite distributive lattice L = _# (P) is called planar if P can be decomposed
into a disjoint union

P={p1,....,pn}YU{q1, ..., qm} (6.10)

such that each of {p1, ..., p,} and {q1, ..., gn} is a chain of P with

PL<:<Pn 41 < <dgm

wheren > 0,m > 0and |P| =n + m.

Example 6.28 Let P be the finite poset of Figure 6.7. Then, P can be decomposed
into the disjoint union {p1, p2, p3} U {q1, 92, 43, g4} with p; < p>» < pz and q1 <
g2 < q3 < q4. It turns out that, since g1 < p3 and py < g3, the finite distributive
lattice _# (P) coincides with the planar distributive lattice L of Figure 6.7.

A clutter of a finite poset P is a subset A of P for which any two elements
belonging to A are incomparable in P. Thus, in particular the empty set as well as a
single-element subset of P is a clutter of P.

Lemma 6.29 A finite distributive lattice L = _¢ (P) is planar if and only if P
possesses no three-element clutter.
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Fig. 6.7 A planar distributive
lattice.

P3

Proof Let a finite distributive lattice L = _# (P) be planar and P = C U C’ with
C N C’, where each of C = {p1,..., pp} and C' = {q1, ..., g} is a chain with
p1<---<ppandgq; < --- < qn. Let A be a subset of P with [A] = 3. One has
either [ANC| > 2or |ANC’| > 2. Thus, A cannot be a clutter.

Now, suppose that P possesses no three-element clutter. Let @ € P be a maximal
element of P. By using induction on | P|, it follows that P \ {a} can be decomposed
into the disjoint union {py, ..., pu} U {q1,...,qm} With p; < --- < p, and g <

- < qm,where [Pl =n+m+ 1. Letn > 1 and m > 1. Since P possesses no
three-element clutter, it follows that {p,, ¢, , a} cannot be a clutter of P.

If p, and g, are incomparable, then one has either p, < a or g, < a. Let, say,
pn < a.Then, {p1,..., pu,atU{qi, ..., qn}is a desired decomposition of P.

If, say, p, < qm, then b < g, for all b € P \ {a, qg,}. Again, by using
induction on | P|, it follows that P \ {g,,} can be decomposed into the disjoint union

{r,....pUlq),....q,withp] <--- < p andq; <--- <gq,,. Sinceaisa
maximal element of P, one has either p,; , = a or q”n/ = a. Let, say, p;l , = a. Then,
q,, < qm.Hence, {p,..., p,,}U{q].....q,,.qm} is a desired decomposition of
P.

Asaresult, L = _Z (P) is a planar distributive lattice. |

Corollary 6.30 A finite distributive lattice L is planar if and only if L possesses no
sublattice which is isomorphic to 93, the Boolean lattice of rank 3.

Proof If L = _# (P)is not planar, then P possesses a three-element clutter {a, b, c}.
Let I denote the smallest poset ideal containing @, b, and c¢. Let I’ = I \ {a, b, c}.
Then, in _# (P), the interval [/ ', I is isomorphic to %;.

Suppose that L = _# (P) possesses a sublattice L” which is isomorphic to 3.
Thus, L consists of 8 elements

aABAY, o B, v, aVB, BVYy, yVa, aVEBVYy,
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where each of «, §, and y is a poset ideal of P. Since, say, BV y <oV BV y,one
hasao ¢ BUy.Letaca\ (BUy),be B\ (yUa),andc € y \ (¢ U B). If, say,
a < b, then a € B, a contradiction. Thus, {a, b, ¢} must be a clutter of P. m]

Let L = _# (P) be afinite planar distributive lattice and suppose that P possesses
a decomposition (6.10). Let K, ,, denote the complete bipartite graph on the vertex
set ({0}U[n]) U ({0}U[m]). Given a poset ideal 8 of P, we write a(8) for the biggest
integer i with p; € B and b(B) for the biggest integer j with g; € B. Let e(B) denote
the edge {a(B), b(B)} of K, and write G(P) for the bipartite subgraph of K, ,,
consisting of those edges e(8) for which g is a poset ideal of P.

Example 6.31 The bipartite graph arising from the finite planar distributive lattice
L = ¢ (P) of Figure 6.7 is

Fig. 6.8 The bipartite graph
arising from a planar
distributive lattice. G(pP) =

Lemma 6.32 Every cycle of G(P) of length > 6 has a chord.

Proof Let C = (ey, e2, ..., ex) be acycle of G(P) of length 2¢ with £ > 3, where
each ¢; is an edge of G(P). It then follows that there exist 1 < k < k' < £ with
er ={i, jtand ey = {i’, j'}, where i,i’ € [n] and j, j/ € [m], such thati < i’ and
J > Jj’. Since e and ¢y are edges of G(P), each of the subsets

B=1{pt,....pi}Ulqr,....q;}, B =1{p1,....pr}Vlq1,....q;}

of P is a poset ideal of P. Thus, in particular each of 8 N B’ and B U B’ is again a
poset ideal of P. Hence, ¢’ = {i’, j} and ¢ = {i, j'} are edges of G(P). Since C
is of length > 6, it follows that either ¢” or ¢” cannot be an edge belonging to C.
Hence, either ¢’ or ¢’ can be a chord of C. O

LetT = K[t1,...,t,51,...,Sn] be the polynomial ring in (n 4 m) variables
over a field K and K[G(P)] C T the toric ring of G(P). Recall that K[G(P)] is
generated by those monomials #;s; with i € [n] and j € [m] for which {i, j} is an
edge of G(P). We define the ring homomorphism 7 : K[L] — K[G(P)] by setting
Y(xg) = tagySnp) for B € 7 (P).

Lemma 6.33 The ring homomorphism 7 is surjective.

Proof Lettis; € K[G(P)]. Then, {i, j} is an edge of G(P). Hence, there is a poset
ideal B of P with a(B) =i and b(B) = j. Thus, one has 7 (xg) = f;s;. |

Lemma 6.34 The kernel of w coincides with the join-meet ideal Iy,
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Proof Lemma 6.32 says that every cycle of G(P) of length > 6 has a chord. It
then follows from Theorem 5.27 that the kernel of r is generated by those quadratic
binomials arising from cycles of G(P) of length 4.

Let C = (e, e2,e3,e4) be a cycle of G of length 4 with e; = {i, j},ex =
{i’, j}es ={i’, j'},eq = {i, j'}, where i,i’ € [n] and j, j/ € [m] withi < i’ and
Jj < J. Let a, az, a3, aq be poset ideals of P with e(ay) = ¢ for 1 < k < 4.
Then, oy N s = o1 and aa U a4 = 3. Hence, the binomial arising from C is equal
t0 Xgp X, — Xay Xay» Which belongs to ¢ .

Leta,B € L = ¢ (P)withe(a) = {i, j} and e(B) = {i’, j'}, where i, i’ € [n]
and j, j/ € [m], and where o and B are incomparable in L. One has, say, i < i’
and j > j’. Then, the binomial fa.p = XaXg — XanpXavp € 91 coincides with
the binomial arising from the cycle C = (ey, e2, €3, e4), where e = {i, j},ex =
{i/,j},es=1{i', j'}, ea = {i, j'}, of G of length 4.

Hence, the kernel of 7 coincides with the join-meet ideal I, as desired. m]

Theorem 6.35 Given a finite modular lattice L, the following conditions are
equivalent:

(i) L is a planar distributive lattice;
(1) in-(IL) is squarefree with respect to an arbitrary pure lexicographic order;
(iii) in<(Ir) is squarefree with respect to an arbitrary monomial order.

Proof ((i) = (iii)) Let L be a planar distributive lattice. It follows from Lemma 6.34
that I; can be identified with the toric ideal of a finite bipartite graph. By
Theorem 5.24, in_ (1) is squarefree with respect to an arbitrary monomial order.

((ii) = (1)) Theorem 6.23 guarantees that every finite non-distributive modular
lattice fails to satisfy the condition (ii). Thus, L must be a distributive lattice.

Let L be a finite non-planar distributive lattice. Corollary 6.30 says that L
possesses a sublattice L’ which is isomorphic to %3. Let a, b, ¢ € L and L' consist
8 elements

E=aAnbnc, a, b, ¢, e=aVvb, f=bVve, g=cVa, {=aVbVvec.

Let <purelex denote the pure lexicographic order induced by the ordering of the
variables as follows:

* Xg < Xp <Xe <X < Xp <X <Xg <Xf;
 xy<xpforallh e L\{§,a,b,c,e, f,g,¢}.

It follows that the minimal system of monomial generators of the initial ideal
in<1Durelex (I,) contains &¢ 2. Since <purelex 1S an elimination order, it follows from
Corollary 1.35 that the minimal system of monomial generators of in. .. (/L)
must contain £¢2. Hence, N, (/1) cannot be squarefree.

Finally, (iii) = (ii) is trivial. O
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Recall that the divisor lattice of an integer n > 1 is the finite lattice &, consisting
of all divisors of n ordered by divisibility. Every Boolean lattice is a divisor lattice.
Every divisor lattice is a distributive lattice.

Let, in general, L be a finite pure lattice with its rank function p. A cut edge of
L is a pair (a, b) of elements of L with p(b) = p(a) + 1 such that

HeelL: ple)=p@}l=Hcel: plc)=pD)} =1

Lemma 6.36 Let L be a planar distributive lattice with no cut edge. Then, L is the
divisor lattice 2.3 with r > 1 if and only if no sublattice of L is isomorphic to the
lattice ¥ (Cy4) of Figure 6.9.

Fig. 6.9 The cycle of length
4 and its distributive lattice.

Cy= J(Cd) =

Proof “Only If” follows easily. Now, “If” is proved. Let P be decomposed into a
disjoint union (6.10) with n > m > 1. What we must prove is that m = 1 and that
q1 and p; are incomparable in P for 1 <i < n.Letn > m > 2. Since L has no
cut edge, there is no element of P which is comparable with any other element of
P. In particular, p; and g are incomparable in P. In order to prove the existence
of a sublattice of L which is isomorphic to _# (C4), we must show that there exist
1 <i<mandl < j < nsuchthat p; and g; are incomparable in P and that p; 1
and g1 are incomparable in P.

If p> and g; are incomparable in P, then we are done. Suppose that, say, p» > ¢
and write jo > 2 for the biggest integer with p» > gj,. If jo = m, then p; is
comparable with any other element of P. Thus, jo < m. Then, p; and g+ are
incomparable in P. In fact, if p» < gj,+1, then again p; is comparable with any
other element of P. Furthermore, p; and g, are incomparable in P. In fact, if
D1 < qj,, then g;, is comparable with any other element of P. Hence, p; and g, 11
are incomparable in P, and p; and g, are incomparable in P, as required. O

Theorem 6.37 Let L be a finite lattice with no cut edge. Then, the following
conditions are equivalent:

(i) L is the divisor lattice of 2 - 3" withr > 1;
(i) I possesses a quadratic Grobner basis with respect to an arbitrary monomial
order.
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Proof ((i) = (ii)) Let L = 2,.3r be the divisor lattice of 2 - 3" with r > 1. Let P be
the finite poset with L = _# (P). Then, P = {a, b1, ..., b}, where by < --- < b,
and where a is incomparable with each of b;. Hence, as was seen in the proof of
Theorem 6.35, the join-meet ideal /7 can be identified with the toric ideal of the
complete bipartite graph K>, on [2] U [r]. Since every cycle of K>, is of length
4, it follows from Corollary 5.12 that each primitive binomial of the toric ideal of
K>, is quadratic. Hence, I;, possesses a quadratic Grobner basis with respect to an
arbitrary monomial order, as desired.

(i) = (1)) Example 6.25 says that L cannot possess the pentagon lattice N
as a sublattice. Furthermore, Example 6.24 says that L cannot possess the diamond
lattice M5 as a sublattice. In addition, it follows from the proof of Theorem 6.35 that
L cannot possess the Boolean lattice %3 of rank 3 as a sublattice. Hence, L must
be a planar distributive lattice. Let L = _# (P). Suppose that P is not the divisor
lattice of 2 - 3" with r > 1. Lemma 6.36 says that L contains a sublattice L” which
is isomorphic to _# (Cy4). Let L’ consist of

E=anb, a, b, c=avb=enf, e, f, C=eVf
Let <purelex denote the pure lexicographic order induced by the ordering
Xe > Xp > Xe > Xf > Xq > Xp > Xg
of the variables. Then, the monomial x,x,x; is contained in the minimal system

of monomial generators of the initial ideal in ... Hence, I} fails to satisfy the
condition (ii) and L must be the divisor lattice of 2 - 3" with r > 1, as desired. O

Problems

6.14 Let %3 be the Boolean lattice of rank 3.

(1) Find an initial ideal of the join-meet ideal of %3 which is not squarefree.
(i) Find a Grobner basis of the join-meet ideal of %83 which is not quadratic.

6.15 Find a Grobner basis of the join-meet ideal of %3¢, the divisor lattice of 36 =
22 .32, which is not quadratic.
6.5 Projective Dimension and Regularity of Join-Meet Ideals

Let L be a finite distributive lattice. In this section, we determine the regularity and
projective dimension of the join-meet ideal /1 of L.
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We fix a field K. The residue class ring K[L]/I;, can be identified with the toric
ring Zk [L], as explained in Section 6.2. Nowadays, the toric ring Zx [L] is called
the Hibi ring of L (with respect to K).

By Birkhoff’s theorem, L = _#(P), where P is the set of join-irreducible
elements of L and where _# (P) is the set of poset ideals of P. Let S be the
polynomial ring over K in the variables ¢ and x, with p € P. Foreacha € _7 (P),
we set

Uy = prt. (6.11)

pEX

Then, by Theorem 6.19,
Rk[L1=K[uy: o € L].

Let P =PU {0 l} where 0 < p< 1 forall p € P. An order-reversion map on P
isamap o : P — Z>¢ for which a(l) =0ando(p) <o(q) 1fp > ¢ in P. The
set of order-reversing maps on P is denoted Q(P). Given o € .Q(P), we set

We = 1_[ Xg(p)fa(o).
peP

By Problem 6.9, the set of monomials {w, : o € .Q(f’)} is the monomial K -basis
of Zk[L]. We set degw, = 0(6). With this definition given, Zk (L) is a standard
graded K-algebra. By Problem 6.10, Zk[L] is a normal domain. According to a
theorem of Hochster [115], a normal toric ring is Cohen—Macaulay.

We will use the information regarding the monomial K-basis of Zk[L] to
compute its Krull dimension.

Theorem 6.38 Ler L be a finite distributive lattice, and let P be the poset of join-
irreducible elements of L. Then,

dim Zx[L] = |P| + 1.

Proof Since Zk[L] is an affine domain, it follows that dim Zg[L] is equal to the
transcendence degree over K of the quotient field Q(Zk[L]) of Zk[L].

We claim that Q(#Zk[L]) = Q(S), where as above, S = K[t, {x,: p € P}I.
Since trdeg(Q(S)/K) = | P|+ 1, the theorem will follow. Obviously, Q(Zk[L]) C
Q(S). Thus, in order to show that the two quotient fields are the same, it suffices to
show that the variable ¢ and as well as the variables x, belong to Q(#[L]). This
is clear for ¢, because t = uy. Now, let p € P,andleta = {g € P: g < p}and
B =1{q € P: q < p}. Then, both, o and 8 are poset ideals of P, and uy/ug = x,.
Thus, x, € Q(ZkI[L]). O

Corollary 6.39 Let L and P be as in Theorem 6.38. Then,
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projdim Iy = |L| — |P| — 2.

Proof By the Auslander-Buchsbaum formula (Theorem 2.15), we have
projdim Zx[L] + depth Zg[L] = |L|. Since Zk[L] is Cohen—Macaulay, we
have depth Zg[L] = dim Zk[L]. Thus, together with Theorem 6.38, it follows
that

projdim I}, = projdimZk[L] — 1 = |L| —dimZk[L]—1 = |L| —|P| — 2.

O

Next, we will study the regularity of /; . For this purpose, we have to recall a few
facts about the canonical module of a Cohen—Macaulay ring. The results that we are
quoting can all be found in [27].

Let R be a Cohen—Macaulay standard graded K -algebra of dimension d with
graded maximal ideal m, and let Hg(¢) = Q(t)/(1 — 1)@ be the Hilbert series of
R. By Corollary 2.18, one has reg R = deg Q(¢). The a-invariant a(R) of R is
defined to be the degree of the Hilbert series of R, which by definition is equal to
deg O(t) —d.

Thus, we see that in combination with Theorem 6.38 we obtain

reglp =reg Zx[L]1+ 1 = a(Zk[L]) + |P| + 2. (6.12)

The a-invariant of R can be expressed in terms of the canonical module wg, which,
up to isomorphisms, is uniquely determined by the property that

R/m ifi=d,

Exth, (R/m, wg) =
R 0 ifi £d.

The canonical module is a graded R-module and following Goto and Watanabe [84],
who introduced the a-invariant, we have:

a(R) = —min{i: (wg); # O}. (6.13)

By (6.12), it remains to compute the a-invariant of Zg[L] in order to determine the
regularity of I . For this purpose, we use formula (6.13). The canonical module of a
normal toric ring has the following interpretation: Let A be a configuration matrix.
The set C = Zx¢A is an affine semigroup . We let R>oC be the cone spanned by C,
and define the relative interior of C as:

relint(C) = CNrelint(R>oC).

Here, relint(R>(C) is the interior of R>oC with respect to its affine hull.
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Theorem 6.40 (Danilov, Stanley) Let A € Z"*" be a configuration matrix, and
assume that the affine semigroup C = 7Z>A generated by A is normal. Then,
K[C] C K[tli, e, t;l—L], and wk(c) has the monomial K-basis consisting of all

t¢ with ¢ € relint(C).
By using the theorem of Danilov and Stanley, we get

Theorem 6.41 Let L and P be as in Theorem 6.38, and let 95(13) lze the set of
strictly order reversing maps o : P — Zso, that is, maps with o(1) = 0 and
o(p) <o(q)ifp > qin P. Then, the monomial K -basis of wg (1] consists of the

set of monomials ws = [] xz(p)t"(ﬁ) witho € .Qs(ﬁ).

peP

Proof Let A C Z™*" be the configuration matrix corresponding to the genera-
tors (6.11) of Zg[L]. Here,m = |P|+1 and n = |L|. Let C be the affine semigroup
of generated by A. According to Theorem 6.40, we have to show that the exponent

vector of wy =[] xf,(p )170) with o € 2(P) belongs to relint C if and only if

o € 2%(P).

Let P = {p1,s--es Pm—1} U {6, i}. Let U denote the set of those i € [m — 1]
for which 1 covers pi and V the set of those j € [m — 1] for which p; covers 0.
Let W be the set of pairs (k, £) € [m — 1] x [m — 1] for which p; covers p,. For
eachi € U, write H* C R™ for the closed half-space of R” defined by x; > 0. For
each j € V, write H;?* C R™ for the closed half-space of R defined by x,, > x;.
Furthermore, for each (k, £) € W, write Hy ¢y C R™ for the closed half-space of
R™ defined by x; > x;. We then claim

R>oC = (ﬂ Hi*) ﬂ( ﬂ H]**) m( ﬂ H(k’g)). (6.14)

ieU JjEV (k&) ew

peP

Clearly, the left-hand side of (6.14) is contained in the right-hand side of (6.14).
Leta = (ay,...,an) € R™ belong to the right-hand side of (6.14). Our work is
to show that a € R>oC. Let ¢ > 0 denote the number of nonzero components
of a. If ¢ = 0, then a is the origin of R™ and the origin belongs to R>oC. Let
q >0and o = {p; € P : a; > 0}. It then follows that « is a poset ideal of
P.Let p(e) =) ; cq € T €n, where 1, ..., e, are the canonical unit coordinate
vectors of R™. Let r = min{a; : @; > 0} and b = rp(«). Since the number of
nonzero components of a — rb is less than ¢ and since a — rb belongs to the right-
hand side of (6.14), it follows that a — rb € R>(C. Since rb € R>(C, one has
a= (a—rb)+rb € R5oC. This completes the proof of (6.14).

We now claim that the right-hand side of (6.14) is irredundant. Let .7 denote the
set of closed half-spaces in the right-hand side of (6.14). If i € U, then —e; belongs
to (ﬂH*;éHef H)\R-(C.If j € V, then e; belongs to (ﬂH**;éHe%ﬁ H)\Rx>oC.
If (k, £) € W, then (Z .<p, €) — €¢ belongs to (ﬂH(k pEHEH H)\ R>oC.

Since the right- hand s1de of (6.14) is irredundant and since the affine hull of
R>oC is R™, it follows that the facets of R>oC are those [H]NR>oC with H € JZ,
where [ H] is the hyperplane of R” which is the boundary of H. It then follows that
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relint(R>0C) = R=0C \ | J [H]
Hex

Hence, relint(C) consists of those (ay, ..., an) € Z>¢ such that: (i) a; > 0 for
i €U, (i)ay > ajfor j € V,and (i) ag > qy for (k,£) € W. As a result, for
o€ 9(13), the vector (o (p1), ..., 0 (Pm—1), 0(6)) belongs to relint C if and only
ifo € .QS(IS), as desired. O

We use the convention to set reg(/) = 1 if  is the zero ideal. Now, we have all
the tools available to prove:

Theorem 6.42 Let L be a finite distributive lattice and P its poset of join-
irreducible elements. Then,

reg I = |P| —rank P.

Proof By formula (6.12), it remains to be shown that a(Zk[L]) = —rank P — 2.
Since rank P = rank P + 2, this equation for the a- 1nvar1ant will follow from (6.13),
once we have shown that mm{l (wg)i #0} = rank P.

Leto € £2°(P) and let 0 < pr<--<p< 1 be a maximal chain in P with
r =rank P + 1. Then,

0<o(p) <a(pri1) <---<a(p) <o(0).

It follows that o (6) > rank 13, and hence Theorem 6.41 implies that min{i : (wy); #
0} > rank P.
In order to prove equality, we consider the depth function §: P — Z>o which

for p € P is defined to be the supremum of the lengths of chains ascending from p.
Obviously, § € £2°(P) and §(0) = rank P. This concludes the proof of the theorem.
[}

Problems

6.16 Determine all finite posets P for which I; with L = #(P) has a linear
resolution.

6.17 Compute the regularity of /; when L is the Boolean lattice %,

6.18 Give the complete list of posets P for which I} with L = . (P) has regularity
three.

6.19 Given integers » < d — 2, show that there exists a finite distributive lattice L
such that dim Zk[L] = d andreg I} =r.
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Notes

Birkhoff [17] is the basic source of classical lattice theory. A quick discussion on
the lattice theory can be found in, e.g., Stanley [200, Chapter 3]. The highlights
of Section 6.1 are Theorem 6.4, Birkhoff’s fundamental structure theorem for
finite distributive lattices, and Theorem 6.10 due to Dedekind, which characterizes
distributive lattices and modular lattices. Except for Theorem 6.10, the topics
discussed in Section 1 appear in [200, Chapter 3].

The join-meet ideal of a finite distributive lattice together with the toric ring
Zx L] is introduced by [104]. Theorem 6.21, Problem 6.9, Problem 6.10 as well as
Theorem 6.41 are discussed in [104]. Furthermore, it is proved in [104] that Zx [L]
with L = _#(P) is Gorenstein if and only if P is pure. In the monograph [146],
the toric ring Zx[L] is called Hibi ring. The study of join-meet ideals of arbitrary
lattices originated in [95] and [69]. Section 6.3 is due to [69] and Section 6.4 is due
to [95].

The Hibi ring of L = _# (P) coincides with the Ehrhart ring [105, p. 97] of the
order polytope [197] of P. Thus, its Hilbert series can be computed explicitly by
using the theory of P-partitions, developed in Stanley’s dissertation [198]. See also
[72] and [176]. In particular, the formula a(Zk[L]) = —rankP — 2 in the proof of
Theorem 6.42 follows.

In [197], together with the order polytope &(P), the chain polytope € (P)
of a finite poset P is also studied. A basic question when &(P) and € (P) are
unimodularly equivalent is solved in [108]. The Hibi ring Z [L] is an algebra with
straightening laws [105, Chapter XIII] on L = _#(P). Furthermore, it turns out
[107] that the Ehrhart ring of %’ (P) is again an algebra with straightening laws on
L= _¢Z(P).

In the frame of combinatorics and commutative algebra, the Hibi ring has been
studied in many articles. For example, the articles [5, 35, 59, 64, 66, 98], and [99]
have contributed to the development of the theory of Hibi rings. In [64], the question
when the join-meet ideal of a finite distributive lattice is an extremal Gorenstein
ideal is solved. Furthermore, in [61] a characterization for the join-meet ideal of a
finite planar distributive lattice to be linearly related is given. It would, of course,
be of interest to find a characterization for the join-meet ideal of a finite distributive
lattice to be linearly related. In [66], the pseudo-Gorenstein Hibi ring is completely
classified. In [99], the nearly Gorenstein Hibi ring is completely classified. In [98],
the strongly Koszul Hibi ring is completely classified. The study on Grobner bases
of join-meet ideals of finite distributive lattices with respect to lexicographic orders
is partially done in [5].

The Hibi ring is naturally related with determinantal rings and ideals [23, 65]. Let
X be an m x n-matrix of indeterminates with 2 < m < n and A a pure simplicial

complex on [n] of dimension m — 1. Given a facet F = {ay,...,a;,} with 1 <
ay < --- <ag <n,wewrite ug = [ay, ..., ay] for the maximal minor of X with
columns ay, ..., a,. We then introduce the ideal Jo C K[X], where K[X] is the

polynomial ring in mn variables, which is generated by those up with F € .%(A),
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where .7 (A) is the set of facets of A. The ideal J, is called the determinant facet
ideal of A. In [65], the problem when J, is a prime ideal as well as that when the
generators of J4 form a Grobner basis is studied.

To introduce a generalization of Hibi rings and join-meet ideals of finite
distributive lattices is, of course, of interest. Such work has been done by, for
instance, [68, 71] and [15]. Let P and Q be finite posets and K[{x?7 :peP,qgce
Q }] the polynomial ring in | P|| Q| variables over a field K. Let Hom(P, Q) denote
the set of order-preserving maps ¢ : P — Q. Then, Hom(P, Q) is a finite poset by
setting ¢ < ¥ if (p) < ¥ (p) forall p € P. Given ¢ € Hom(P, Q), we associate
the monomial u, = [] peP xf,)(p ). The toric ring K[P, Q] which is generated by
those monomials u, with ¢ € Hom(P, Q) is called the isotonian algebra of (P, Q).
When Q is a chain Cy : g¢1 < ¢» of length 1, then K[P, C1] is isomorphic to the
Hibi ring Zk[L] with L = _Z (P).In [15], it is conjectured that K [P, Q] is always
normal and a partial answer of the conjecture is obtained. In addition, the problem
when K[ P, Q] possesses a quadratic Grobner basis is discussed.

On the other hand, the monomial ideal generated by the monomials u,, where o
is a poset ideal of P, is also deeply studied by, for instance, [92] and [93]. We refer
the reader to the monograph [94] for the detailed information.

Furthermore, the Hibi ring appears in representation theory [121, 122, 130-134,
215] and in algebraic geometry [20-22, 50, 83, 136, 137, 179, 180, 192, 193, 211],
See also [14] for a topic in statistics.



Chapter 7 ®
Binomial Edge Ideals and Related Ideals oy

Abstract In this chapter we consider classes of binomial ideals which are naturally
attached to finite simple graphs. The first of these classes are the binomial edge
ideals. These ideals may also be viewed as ideals generated by a subset of 2-minors
of a (2 xn)-matrix of indeterminates. Their Grobner bases will be computed. Graphs
whose binomial edge ideals have a quadratic Grobner basis are called closed graphs.
A full classification of closed graphs is given. For an arbitrary graph the initial
ideal of the binomial edge ideal (for a suitable monomial order) is a squarefree
monomial ideal. This has the pleasant consequence that the binomial edge ideal
itself is a radical ideal. Its minimal prime ideals are determined in terms of cut point
properties of the underlying graph. Based on this information, the closed graphs
whose binomial edge ideal is Cohen—Macaulay are classified. In the subsequent
sections, the resolution of binomial edge ideals is considered and a bound for
the Castelnuovo-Mumford regularity of these ideals is given. Finally, the Koszul
property of binomial edge ideals is studied. Intimately related to binomial edge
ideals are permanental edge ideals and Lovész, Saks, and Schrijver edge ideals.
Their primary decomposition will be studied.

7.1 Binomial Edge Ideals and Their Grobner Bases

Let G be a finite simple graph, that is, G has no loops and no multiple edges. Unless
otherwise stated, G will always be a finite simple graph without isolated vertices.
We denote by V (G) the set of vertices of G and by E(G) the set of edges of G. We
say that G is a graph on [n], if V(G) = [n], where [n] = {1, 2, ...,n}.

Let K beafieldand S = K[x1, ..., Xu, Y1, - .., Yu] be the polynomial ring in 2n
variables. For 1 <i < j <n weset f;; = x;¥; — x;y;. The binomials f;; are the

2-minors of the matrix
<x1 X2 .. .xn>
VIY2 o)

© Springer International Publishing AG, part of Springer Nature 2018 171
J. Herzog et al., Binomial Ideals, Graduate Texts in Mathematics 279,
https://doi.org/10.1007/978-3-319-95349-6_7


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-95349-6_7&domain=pdf
https://doi.org/10.1007/978-3-319-95349-6_7

172 7 Binomial Edge Ideals and Related Ideals

Fig. 7.1 A labeled graph 3
1< >
4 5
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Definition 7.1 Let G be a graph on [n]. The binomial edge ideal Jg C S of G is
the ideal generated by the binomials f;; = x;y; — x;y; such thati < j and {i, j} is
an edge of G.

Consider, for example, the graph G displayed in Figure 7.1. The binomial edge
ideal of this graph is the ideal

JG = (X1y2—X2y1, X1Y3—X3Y1, X2Y3—X3Y2, X2Y4—X4Y2, X3Y4—X4Y3, X4Y5—X5Y4).

7.1.1 Closed Graphs

We first study the question of when Jg has a quadratic Grobner basis.

Theorem 7.2 Let G be a graph on [n], and let < be the lexicographic order on S =
K[xt,..., X0, Y1, ..., Ynlinduced by x1 > x3 > -+ > X > y1 > Y2 > -+ > Y.
Then the following conditions are equivalent:

(i) the generators fij of Jg form a quadratic Grobner basis;
(ii) for all edges {i, j} and {k,l} withi < j and k < | one has {j,l} € E(G) if
i=kand{i,k} € E(G)ifj=I.

Proof (i) = (ii): Suppose (b) is violated, say, {i, j} and {7, k} are edges with i <
J < k,but {j, k} is not an edge. Then S(fix, fij) = yi fjkx belongs to Jg, but none
of the initial monomials of the quadratic generators of Jg divides in< (y; fjk)-

(ii) = (i): We apply Buchberger’s criterion and show that all S-pairs S(f;;, fx/)
reduce to 0. If i # k and j # [, then in_ (f;;) and in- (fi;) have no common factor.
In this case, according to Lemma 1.27, S(f;;, fi) reduces to zero. On the other
hand, if i = k, we may assume that/ < j. Then

S(fij, fi) = yi fij

is the standard expression of S(f;;, fi;). Similarly, if j = [, we may assume that
i < k. Then

S(fij, fxj) = x; fik

is the standard expression of S(f;;, fi;). In both cases the S-pair reduces to 0. O
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Fig. 7.2 The claw

Fig. 7.3 A net and a tent

Condition (ii) of Theorem 7.2 does not only depend on the isomorphism type of
the graph, but also on the labeling of its vertices. For example, the graph G with
edges {1, 2}, {2, 3}, and the graph G’ with edges {1, 2}, {1, 3} are isomorphic, but G
satisfies condition (b), while G’ does not.

Definition 7.3 A graph G satisfying the equivalent conditions of Theorem 7.2 is
called closed with respect to the given labeling of the vertices, and G is called closed
if it is closed with respect to a suitable labeling of its vertices.

The so-called claw shown in Figure 7.2 is the simplest example of a graph which
is not closed. Indeed, suppose the claw is closed, and let {7, j}, {i, k}, and {i, [} be
the edges of the claw. Then i # min{i, j, k, [}, since we assume that the claw is
closed. If j < i, then k > i and ! > i, again since we assume the claw is closed.
But then {k, j} must be an edge of the claw, a contradiction.

A graph which does not contain any claw as an induced subgraph is called claw-
free. Next follows a necessary condition for a graph to be closed.

Proposition 7.4 If G is closed, then G is chordal and claw-free.

Proof Suppose G is not chordal, then G contains a cycle C of length > 3 with no
chord. Let i be the vertex of C withi < j forall j € V(C) \ {i}, and let {i, j} and
{i, k} be the edges of C containing i. Theni < jandi < k, but {j, k} € E(G).
Since G is closed, any induced subgraph is closed as well. Since a claw is not
closed, G must be claw-free. O

The path graph on n vertices, denoted P,, is the graph on [r] with edges
{172}1 {2’ 3}7 RN {n - l,f’l}

Any graph isomorphic to P, is also called a path graph. The length of P, is defined
toben — 1.
As a simple consequence of Proposition 7.4 we obtain

Corollary 7.5 A bipartite graph is closed if and only if it is a path graph.
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Proof A bipartite graph has no odd cycles, see Lemma 5.1. Since a closed graph
is chordal, and since a chordal graph has an odd cycle, unless it is a tree, a closed
bipartite graph must be a tree. If the tree is not a path, then it is not claw-free. Thus
a closed bipartite graph must be a path.

Conversely, if G is a path graph of length /, then G is closed for the labeling of
the vertices such that {1, 2}, {2, 3}, ..., {{,[ + 1} are the edges of G. O

The net and tent depicted in Figure 7.3 are chordal and claw-free graphs, but they
are not closed. So Proposition 7.4 does not fully describe all closed graphs. Next we
are aiming at giving a full classification of all closed graphs. In order to do this we
have to introduce some terminology and concepts.

Let A be a simplicial complex. A facet F of A is called a leaf, if there exists a
facet G of A with G # F that HNF C GNF for all facets H with H # F. The
facet G is then called a branch of F. The simplicial complex A is called a guasi-
forest, if the facets of A can be ordered Fi, ..., F, such that for each i > 1, the
facet F; is a leaf of (Fy, ..., F;). Such an order of the facets of A is called a leaf
order. A connected graph which is a quasi-forest is called a quasi-tree.

Let as before G be a graph on the vertex set [n]. A clique of G is asubset F C [n]
with the property that each 2-element subset of F is an edge of G. The set of all
cliques forms a simplicial complex A(G), called the clique complex of G.

By a theorem of Dirac [54], G is chordal if and only if G has a perfect elimination
order which means that its vertices can be labeled such that for every j, the set
Fi={i:i <jand{i, j} € E(G)}is aclique of G. Equivalently, Dirac’s theorem
can be phrased as follows.

Theorem 7.6 The graph G is chordal if and only if A(G) is a quasi-forest.
With this preparation we obtain a first characterization of closed graphs.
Theorem 7.7 Let G be a graph on [n]. The following conditions are equivalent:

(i) G is closed;
(ii) there exists a labeling of G such that all facets of A(G) are intervals [a, b] C
[n].

Moreover, if the equivalent conditions hold and the facets Fi, ..., F, of A(G) are
labeled such that min(F1) < min(F2) < --- < min(F;), then F1, ..., F, is a leaf
order of A(G).

Proof For the proof of the theorem we may assume that G is connected.

(1) = Gi): Let F = {j: {j,n} € E(G)}U{n}, and let k = min{j: j € F}.
Then F = [k, n]. Indeed, if j € F with j < n, then, by Problem 7.1, it follows that
{j, j + 1} € E(G). Moreover, because G is closed and {j, n} € E(G), we see that
also{j+1,n} € E(G).Thus j +1 € F.

Next observe that F is a maximal clique of G, that is, a facet of A(G). First of
all it is a clique, because if i, j € F withi < j < n, then, since {i, n} and {j, n} are
edges of G, it follows that {i, j} is an edge as well, since G is closed. Secondly, it is
maximal, since {j,n} & E(G),if j & F.
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Let H # F be afacet of A(G) with HNF # ¢}, and let £ = max{j: j € HNF}.
We claim that HNF = [k, £]. There is nothing to prove if k = £. So now suppose
thatk < fandletk <t <fands € H\ F. Thens,t < £ and {s, £} and {z, £} are
edges of G. Hence since G is closed it follows that {s, t} € E(G). This implies that
t € H, as desired.

It follows from the claim that the facet H for which max{j: j € HNF} is
maximal is a branch of F. In particular, F is a leaf. Let HNF = [k, £], where H is
a branch of F', and denote by G, the restriction of G to [£]. Since G is again closed
and since £ < n, we may assume, by applying induction on the cardinality of the
vertex set of G, that all facets of A(Gy) are intervals. Now let F’ be any facet of
A(G).If F = F/, then F is an interval, and if F # F’, then, as we have seen above,
it follows that F' € A(Gy). This yields the desired conclusion.

(i1) = (i): Let {i, j} and {k, €} be edges of G withi < jandk < £.If i = k, then
{i, k} and {i, £} belong to the same maximal clique, that is, facet of A(G) which by
assumption is an interval. Thus if j # £, then {j, £} € E(G). Similarly one shows
that if j = £, buti # k, then {i, k} € E(G). Thus G is closed.

Finally it is obvious that the facets of A(G) ordered according to their minimal
elements is a leaf order, because for this order F;_; has maximal intersection with
F; foralli. O

Definition 7.8 A graph G is called an interval graph if for all v € V(G) there
exists an interval I, = [l,, r,] of the real line such that I,NI,, # @ if and only
if {v, w} € E(G). If, in addition, the intervals can be chosen such that there is no
proper containment among them, then G is called a proper interval graph or simply
a PI graph.

Let G be a graph. A set of intervals {I,}yev(c) as in Definition 7.8 is called an
interval representation of G.

Let G be a graph on the vertex set [n]. Then G satisfies the proper interval
ordering with respect to the given labeling, if for all i < j < k with {i, k} € E(G)
it follows that {i, j}, {j, k} € E(G). We say G admits a proper interval ordering if
G satisfies the proper interval ordering for a suitable relabeling of its vertices.

Theorem 7.9 The following conditions are equivalent:

(1) G is a closed graph.
(i) G is a proper interval graph.

Proof We may assume that G is connected. For the proof we use the fact that G is a
proper interval graph if and only if G admits a proper interval ordering, as shown in
[141, Theorem 2.1]. Thus we need to show that G is closed if and only if G admits
a proper interval ordering.

Let [n] be the vertex set of G. Suppose first that G is closed. By Theorem 7.7
we may assume that the maximal cliques of G are (integral) intervals. Now let i <
Jj < kwith {i, k} € E(G). Then the vertices i, k belong to a clique of G, say [a, b].
Then j € [a, b] and hence {i, j} and {J, k} are edges of G. This shows that the given
labeling is a proper interval ordering.



176 7 Binomial Edge Ideals and Related Ideals

Conversely, suppose G admits a proper interval ordering. We may assume that
the given labeling has this property. Let {7, j} and {i, k} be two different edges of G
withi < j and i < k. We may assume that j < k. By the interval ordering property
it follows that {j, k} € E(G). On the other hand, if k, j < i, the interval labeling
property guarantees again that {j, k} € E(G). Thus G is closed. O

A vertex v € V(G) is called a simplicial vertex of G if v belongs to exactly
one maximal clique of A(G). The concept of simplicial vertices will be used in the
proof of next theorem and in many more of the following results.

Theorem 7.10 Let G be a graph. Then G is closed if and only if G is chordal,
claw-free, net-free, and tent-free.

Proof 1If G is closed, then G is chordal and any induced subgraph of G is closed as
well. Hence, since the claw, the net, and the tent are not closed, none of them can be
an induced subgraph of G.

We prove the converse by induction on the number of vertices of G. If G has two
vertices, the statement is trivial. We now may assume that G is a connected chordal
claw-free graph on the vertex set [n], with n > 3, and that the converse is true for
graphs with n — 1 vertices. Since G is chordal, we may choose a perfect elimination
order on G. Then the vertex labeled with n is obviously a simplicial vertex.

Let G’ be the restriction of G to the vertex set [n — 1]. Then G’ is clearly
chordal and claw-free and does neither contain a net or a tent as an induced
subgraph. We claim that G’ is also connected. Indeed, suppose G’ has at least
two connected components. Then, as G is connected, it follows that the vertex
n must belong to at least two maximal cliques of G, a contradiction. Therefore,
we may apply the inductive hypothesis to G’ and conclude that G’ is closed. By
Theorem 7.7, it follows that we may relabel the vertices of G’ with labels from 1
to n — 1 such that the facets of A(G’) are F| = [a1, b1], ..., F, = [a,, b,] with
l=a; <a <--- <a < b =n—1.0f course, this new labeling may not be a
perfect elimination order for G.

In order to prove that G is closed we will use the criterion given in Theorem 7.7.
Let us first assume that G’ itself is a clique. If the vertex n of G is adjacent to all the
vertices of G’, then G is a clique as well, thus it is closed. If not, then we may relabel
the vertices of G’ such that those which are adjacent to the vertex n of G have the
largest labels among 1, ...,n — 1. Then, we get A(G) = ([1,n — 1], [a, n]) for
some 1 < a <n — 1. Thus G is a closed graph with two maximal cliques.

We now consider the case when G’ has two maximal cliques, say, A(G') =
(F1, Fo) with Fi = [1,b], F, =[a,n — 1] forsome 1l <a <b <n—1.

Letiy, ..., iy € [n— 1] be the vertices of G’ adjacent to n in G. Then {iy, ..., is}
is a clique of G’, and hence {iy,...,i¢;} C F; for some i. We may assume that
{i1,...,i¢} C F,. Otherwise, we reduce to this case by relabeling the vertices of
G asfollows:i —n—iforl <i <n-—1.1If{i1,...,i¢} = F», then A(G) =
([1, b], la, n]), hence G is closed.

Now we assume that {iy, ..., i¢} C F>.If all the vertices iy, ..., iy are simplicial
vertices of F; (in G'), then we may relabel all the simplicial vertices of F» such that
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{it,...,i¢} ={n—1,n—=2,...,n — £}. It follows that A(G) = {([1,b],[a,n —
1], [n — £, n]), thus G is closed. We have to treat now the case when at least one of
the vertices i1, .. ., i¢, let us say i1, belongs to 1 N F,. If there is a simplicial vertex
k € F» which is not adjacent to n, then we get an induced claw graph in G with the
edges {1,i1}, {i1, n}, {i1, k} which is impossible. Therefore, all the free vertices of
F> are contained in the set {if, ..., i¢}. In this case we may permute the labels of the
vertices in the intersection F| N F, such that the set {i, ..., iy} is an interval of the
form [c, n — 1] where a < ¢ < b. Consequently, A(G) = {([1, b], [a, n — 1], [c, n]),
thus G is closed.

Finally, we discuss the case when A(G’) has at least three facets, that is, the

facets of A(G') are F; = [a1,b1],..., Fr = [a,,b,]with]l =a; <a» < -+ <
ar <b, =n—1andr > 3. Let, as before, i1, ..., iy be the vertices adjacent to the
vertex n. Since F = {iy, ..., ig} is a clique in G’, there exists a maximal clique of

G’ which contains F. We distinguish two cases.

Case 1. {iy,...,ig} C Fyor{ii,...,ig} C F:1If {iy,...,i¢} C F1, then we
may reduce to the case that {iy,...,i¢} C F, by reversing the labels of G/,
namely:i —>n —iforl <i <mn—1.

If {i1, ..., i¢} = F;, then clearly G is closed since A(G) = (Fy, ..., Fr—1, F; U
{n}). Next assume that {i1,...,i;} C F,. We proceed as in the case when G’
had two cliques. Indeed, if all the vertices iy, ..., iy are free in G’, then we may
relabel the simplicial vertices of F, such that {i1,...,i¢} = {n —€,n — £ +
1,...,n — 1}. With respect to this new labeling, A(G) = (Fy,..., Fq,[n —
£, n])), and thus G is closed. In contrast to the case when A(G’) had two cliques,
F, may have non-empty intersection with several maximal cliques of G’. Let j
be the smallest integer such that there exists an element in F, say i1, such that
i1 € Fj N F,. We claim that in this case, the set F, \ F; must be contained in
{i1, ..., i¢}). Indeed, let us assume that there exists k € F, \ F; such that k is
not adjacent to the vertex n of G. Then {min F;, i1}, {i1, n}, {i1, k} is an induced
claw of G, a contradiction.

Thus F, \ Fj C {i1,...,i¢}. Then we may relabel (if necessary) the vertices of
F; N F, such that the set {i, ..., i¢} is an interval of the form [c, n — 1] where
ar < ¢ < bj. With respect to this new labeling, the maximal cliques of G are the
intervals Fi, ..., F,_1 and F, U {n}, hence G is closed.

Case 2. {i1,...,i¢} C F;jforsome?2 <i <r—1.

If we have equality, namely {iq,...,i;} = F; and F;_1 N Fj41 = (, then we
may relabel the vertices of F; U {n} and of Fji1,..., F such that A(G) =
(Fi = [a1,b1], ..., Fic1 = [ai-1,bi1], F{ = lai,bi + 11, F{ | = [aiy1 +
1,bit1+11,..., F. = [ar + 1,b, + 1 = n]). The case that F;_; N Fj| # ¢}
and {if,...,i¢} = F; cannot occur. Indeed, let j € F;_; N F;41 and set
p = min{tr : j € F;}, g = max{t; j € F;}. Then G has the claw with edges
{min F,,, j}, {j, n}, {j, max F,} as induced graph, which is impossible.

Let now {iy,...,i¢} C F;. We split the rest of the proof into two subcases.

Subcase 2 (a). The facet F; of A(G’) has a simplicial vertex. This implies, in
particular, that F;_1 N Fj41 = .
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Let j be a simplicial vertex of F; and assume {j,n} € E(G). If there exist
some vertices p € F; N F;_1,q € F; N F;1 which are not adjacent to n,
we get an induced subgraph of G isomorphic to a net by choosing the triangle
{j, p, q} together with the edges {j, n}, {min F;_1, p}, {g, max F;;.} By our
assumptions, this is impossible. Therefore, if F; has a simplicial vertex adjacent

to n, then we must have either F; N Fi_; C {i1,...,i¢} or F; N Fj41 C
{i1, ..., i¢}. Obviously these two situations are symmetric. Let us assume that
FiNF;j4+1 C{i,..., i} and that there exists p € F; N F;_1 which is not adjacent

to n. Then we get the induced claw of G with edges
{ps min(Fi N Fi+1)}1 {nv min(Fi N Fi+1)}’ {mln(Fl N Fi+1)7 max Fi+1}'

Thus, we have shown that if F; has a simplicial vertex which is adjacent to n,
then {i1, ..., i¢} must contain (F; N F;_1) U (F; N F;4+1). In addition, if there
exists another simplicial vertex of F;, say u, which is not adjacent to n, we
get the induced claw in G with the edges {u, min(F; N Fi4+1)}, {n, min(F; N
Fiy1)}, {min(F; N F;41), max F;41}. Therefore, all the simplicial vertices of
F; must be adjacent to n. Summarizing, we showed that {iy,..., iy} = Fj,
contradicting our hypothesis of Subcase 2 (a).

Let us now assume that no simplicial vertex of F; is adjacent to n. Then there
exists a vertex u € F; N Fj41 or u € F; N F;_1 which is adjacent to n.
There is no loss of generality in assuming that u € F; N F;41. Let k be any
simplicial vertex of F;. Then we find the induced claw subgraph of G with edges
{k,u}, {u, n}, {u, max Fj;1}, contradiction.

Subcase 2 (b). Fi_1NF;y1 # (. We will show that also this subcase cannot occur.
If there exists a vertex j € F;_1 N F;41 which is adjacent to n, then G has an
induced claw with the edges {min F;_1, j}, {j, n}, {j, max F;4+1}, contradiction.
Consequently, n cannot be adjacent to any vertex of F;_; N Fj41.

Letnow j € (F; N F;_1) \ F;4+1 adjacent to n. If there is no vertex adjacent to n
among the vertices of F; N F; 1, then we get the induced claw of G with the edges

{min F;_y, j}, {j, n}, {j, max F}.

This implies that all the vertices in the set (F; N F;4+1) \ F;—1 must be adjacent to
n. But, in this case, we reach a contradiction in the following way. Let r € (F; N
Fiy1) \ F;_1. The induced subgraph of G with the triangles

{min Fj_y, j, max F;_1}, {j, max F;_1, 1}, {max F;_1, t, max Fi4+1}, and {n, j, 1}
is isomorphic to Hj, contradiction to the hypothesis on G.

We end this subcase and the whole proof by observing that the situation when
we choose j € (F; N Fj41) \ F;j—1 adjacent to n is symmetric to the above one. O



7.1 Binomial Edge Ideals and Their Grobner Bases 179
7.1.2 The Computation of the Grobner Basis

We now describe the reduced Grobner basis of the binomial edge ideal of an
arbitrary graph. For this we need to introduce the following concept: let G be a
simple graph on [n], and let i and j be two vertices of G with i < j. A path
i =ig,i1,...,ir = jfromi to j is called admissible, if

(1) ix #igfork # ¢
(ii) foreachk =1,...,r — 1 one has either iy < i oriy > j;
(iii) for any proper subset {j, ..., js}of {i1, ..., i,—1}, the sequencei, ji, ..., js, j
is not a path.

Given an admissible path
b e P

from i to j, where i < j, we associate the monomial

wr = ([T ) (] ] yi)-

ik>j ig<i

Theorem 7.11 Let G be a graph on [n]. Let < be the monomial order introduced
in Theorem 7.2. Then the set of binomials

9 = U {ux fij © mis an admissible path from i to j }

i<j
is the reduced Grobner basis of Jg with respect to <.

Proof We organize this proof as follows: In the first step, we prove that 4 C Jg.
Then, since ¥ is a system of generators, in the second step, we show that ¢ is a
Grobner basis of Jg by using Buchberger’s criterion. Finally, in the third step, it is
proved that ¢ is reduced.

First Step. ~ We show that for each admissible path 7 from i to j, where i < j, the
binomial u f;; belongs Jg. Letn : i =g, i1,...,i,—1,i, = j be an admissible
path in G. We proceed with induction on r. Clearly the assertion is true if r = 1.
Letr > 1land A = {i; : ir <i}and B = {ip : iy > j}. One has either A # @ or
B # (. 1If A # {J, then we set iy, = max A. If B # @, then we set iy, = min B.
Suppose A # @. It then follows that each of the paths y : ik, ikg—1, ..., 11,i0 =
iand 7o @ ik, ikg+1s .-+ ir—1, i = j In G is admissible. Now, the induction
hypothesis guarantees that each of ux, fi i and un, f; . ; belongs to Jg. A
routine computation says that the S-polynomial S(uy, f,-ko,i, Usy fiko, j) is equal
to uy fij. Hence uy fij € Jg, as desired. When B # {J, the same argument
applies as in the case A # {.
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Second Step. It will be proven that the set of those binomials u f;;, where 7 is an
admissible path from i to j, forms a Grobner basis of Ji. In order to show this we
apply Buchberger’s criterion, that is, we show that all S-pairs S(uy fij, us fie),
where i < j and k < £, reduce to zero. For this we will consider different cases.

Leti < j and k < £. Suppose that the initial monomials in.(f;;) and in.( fe)
are relatively prime. Then the following four cases arise:

) i<j=k<{
) i<j<k<d
(i) i <k < j<{¥;
v) i<k <t <.
Let 7 be an admissible path from i to j and o an admissible path from & to £. Since
in.(fij) and in.(fe) are relatively prime, if the following conditions

%) neither x; nor y,; appears in u;
Ye app
(#*) neither x; nor y; appears in i

are satisfied, then S((ux/w) fij, (s /w) fre), where w = ged(uy, us), reduces to
zero. Hence S(uy fij, us fie) reduces to zero. Now, in each of the cases (i), (iii), and
(iv), the above conditions () and () are satisfied. Thus only the case (ii) must be
discussed. Leti < j < k < £.

If k belongs to 7 and if j does not belong to o, then

S(ux fij, uo fie) = Sz /X)X (Xiyj — Xj¥i), o (X Ye — XeYk))
= w(x;yjyrXe — YiXjXkVe),
where w = lem(uy /xg, uq ). Since u, divides w, it follows that w - y; x ;xx y¢ can be

divided by the initial monomial of u, fi¢. We then divide w(x;y;ykxe — yixjxgye)
by us fre. Its reminder is

WX} YjYXe — YiXjYkXe) = W - ypXxe(Xiyj — yix;) = w - ypXg fij.

Lemma 7.12(a) guarantees that (uy /xi)yx fi; reduces to zero with respect to ¢.
Hence w - yrx fij reduces to zero with respect to 4, as desired.
If k belongs to 7 and if j belongs to o, then

Suz fij, o fre) = Suzn /X)X (Xiyj — xjyi), (s /Y)Y (XkYe — XeYk))

= w(X;y;j ykXe — YiXjXkYe)s

where w = lem(uy/xk,us/yj). Since, by using Lemma 7.12(a) again, the
monomial

(W /X)) Yk fij = Ur /XK) Yk (Xiy; — X Vi)



7.1 Binomial Edge Ideals and Their Grobner Bases 181

reduces zero with respect to ¢, it follows that (ux /xg)yrx;y; and (uz /Xk) yiX;yi
can possess a common reminder with respect to ¢. Thus in order to show that
w(x;yjykxe — yixjxrye) reduces to zero, it suffices to prove that

W(YiXjykXe — YiXjXgye) = —W - YiXj fre

reduces to zero. Lemma 7.12(b) guarantees that (u, /y;)x; fr¢ reduces to zero with
respect to &. Hence w - y;x; fi¢ reduced to zero with respect to ¢, as required.

It remains to consider the cases that eitheri = kand j # £ ori # k and j = ¢.
Suppose we are in the first case. (The second case can be proved similarly.) We must
show that S(uy fij, us fie) reduces to zero. We may assume that j < £, and must
find a standard expression for S(uy f;;, s fi¢) whose remainder is equal to zero.

Letm : i =io,i1,...,0, = jand o:i = iy, i},...,i; = £. Then there exist
indices a and b such that

. ./ . . ./ ./
io =1, and {igt+1, ..., 00 iy q, ..., 0} = 0.
Consider the path
. . . . . YAy ./ ./
T =lrsdpely-eslatlola = Iy, lpyqs-esly 1,0y =14

from j to £. To simplify the notation we write this path as
T i =Jo, J1,---s g = 4.
Let
Jry =min{ jc 1 je>j,c=1,...,1},
and
Jioy=min{j. @ je>j,c=t()+1,...,t}
Continuing these procedures yield the integers
0=t0)<t()<---<t(@g—1) <t(g) =t
It then follows that
J = i) < Jiy <o < ug-1 < Jig =4
and, for each 1 < ¢ < ¢, the path
Te t Ji(e=1)s Jile=D+1s - - -5 Ji()=15 Ji(e)

is admissible.
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It will be shown that

q
S(unfij: Us ﬁﬁ) = Z U‘[Cufcfj,(cfl)j,(c)

c=1
is a standard expression of S(uy fij, us fi¢) whose remainder is equal to O.
Here v, is the monomial defined as follows: let w = y; lem(uy, us). Thus
S(ux fij, uo fie) = —wfje. Then

@) ifc =1, we set
Xew
Vg = ——;
Ug) X j 1y
@) if 1 < ¢ < g, we set
XjXew

Uy = ——F————;
Ut X jie—1yX i)

>iii) if c = g, we set

Xiw
Vg, = ]' .
Uy Xjrg-1)
Thus we have to show that
WX jX¢ _wx;
wfje = f]]t(l) + § :—fha nire T fit(q—l)‘
Jz(]) =2 jm l)x]t(c) Jl(q 1)

is a standard expression of wf;, with remainder 0. In other words, we must prove
that

wxyp
® w(xjyll - xﬂyj) = '_(xjyjzu) - xj/(l)yj)
Xjraty

gqg—1
WX Xg
+ - - (xjt(cfl)yjt(c) - xjt((t)y./t(c—l))
=2 x]t(cfl)x./r(c)
wx
x—(x]t(q 1)yl xéyjt(q—l))
Jrg-1)

is a standard expression of w(x;y¢ — x¢y;) with remainder 0.

Since
wx WXjXe
WXjye = ——Xjiq-nYt = ———  Xjig-2Vig-1
Xjrg-n X jrig=2 X Jr(g—1
Wwx;Xxe WXy
o > Xy Yiiey = Yy XiYiys

Xjrny X Jry
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it follows that, if the equality () holds, then (#) turns out to be a standard expression
of w(x;ye — x¢y;) with remainder 0. If we rewrite () as

Vi

w(xjye — xeyj) = w(xjxg——— — X¢y;)

th(l)

y]z() Vijte-1
+ wxjxg E (= - 1)
c=2 ‘x]t(c) 'x]t(c 1)

Vijrg-
+ wixjye — xjx =)

’

Jrg-n
then clearly the equality holds.

Third Step.  Finally, we show that the Grobner basis & is reduced. Let uy f;;
and u(,fke, where i < j and k < £, belong to & with u; fi; # us fie. Let
T i =ipi,...,iy = jand o : k = ko,k1,...,ks = €. Suppose that
uzx;y; divides either uq x;y¢ or ugxeyy. Then {ig, i1, ..., i } is a proper subset
of {ko, k1, ..., kg}.

Leti = k and j = €. Then {iy, ..., i,—1} is a proper subset of {ko, k1, ..., kg}
and k,i1,...,i,—1,£ is an admissible path. This contradicts the fact that ¢ is an
admissible path.

Leti =k and j # €. Then y; divide u,. Hence j < k. This contradicts i < j.

Let {i, j} N {k, £} = @. Then x;y; divide u,. Hence i > ¢ and j < k. This
contradicts i < j. O

Lemma 7.12 Leti < j and mw an admissible path from i to j.

(a) Let k € [n] belong to w with j < k. Then (uy /xi)yk fij reduces to zero with
respectto 9.

(b) Let k € [n] belong to w with k < i. Then (uy/yi)xi fij reduces to zero with
respectto 9.

Proof A proof of (a) is given. The claim (b) can be proved similarly.

Let no vertex & with j < & < k appear in 7. Let 7" be the subpath of 7 from i
to k and 7t be the subpath of 7 from j to k. Then each of 7" and 7" is admissible.
Since uy /Xk = Uzpruzr, it follows that (u /x)yr(x;y; — xjy;) coincides with

U U (Xi Vi — XkYi)Yj — U/ Uz (X j Vi — Xk Y j)Vi-
Hence

(un/xk))’kfij = )’j“ﬂ”un/fik - )’iun/un”fjb

as desired.
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Let mw possess a vertex £ with j < & < k. Onecan find j < § < kofmw
for which the subpath 7’ of = from & to k possesses no & with & < &' < k.
Then one can divide (ux/xk)yx fij by uy fer and its reminder is (uz /xg) Ve fij-
Continuing these procedures, it turns out that a reminder of (uy /xx)y fij is of the
form (ux /xp)yk fij, where i < j < k’ and where no £ with j < & < k' appears in
7. Hence the argument in the previous paragraph says that (u; /xx )y fij reduces to
zero, as required. m]

Problems

7.1

(a) Let G be a finite simple graph on [r]. Show that G is closed with respect to
the given labeling, if and only if for any two integers 1 < i < j < n the
shortest walk {i1, i2}, {i2, i3}, ..., {ik—1, ix} between i and j has the property
thati =i1 <ih < - <igx=j.

(b) Assume in addition to (a) that G is connected, and deduce by using (a), that for
eachi < n one has that {i,i + 1} € E(G).

7.2 Let G be a graph on [r]. Show that G is closed with respect to any labeling of
the vertices if and only if G is a complete graph.

7.3 Let G be a path graph. By using Grobner bases, show that Jg is generated by a
regular sequence.

7.4 Let G be the 5-cycle labeled counterclockwise. Compute the Grobner basis of
J with respect to the lexicographic order induced by x| > -+ > x5 > y; > --- >

Ys.

7.5 Let G be a graph on [n], and let ¢ be the reduced Grobner basis of Jg with
respect to the monomial order introduced in Theorem 7.2.

(a) Show that the maximal degree of an element of ¥ is < n.
(b) Show that there exists a suitable labeling of the vertices of G such that the
maximal degree of an element of ¢ is equal to n if and only G is a tree.

7.2 Primary Decomposition of Binomial Edge Ideals and
Cohen-Macaulayness

Throughout this section, G will denote a finite simple graph on the vertex set [n],
unless otherwise stated.

Our objective to determine the primary decomposition of a binomial edge ideal is
substantially simplified by the following remarkable consequence of Theorem 7.11.
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Corollary 7.13 Jg is a radical ideal.

Proof By Theorem 7.11 we know that for a suitable monomial order, in.(Jg) is
a squarefree monomial ideal. This implies that in_(Jg) is a radical ideal. Suppose
now that fk € Jg for some k. Then in<(f)k = in<(fk) € in.(Jg), and hence
in.(f) € in.(Jg). Thus there exists g € Jg with in.(g) = in-(f), and hence
a € K such thatin_ (f —ag) < in-(f). Since (f — ag)* = f* — gh for some & in
S, it follows that (f — ag)* € Jg, and since in-(f — ag) < in-(f) we may apply
an induction argument to conclude that f — ag € Jg. But then also f € Jg. O

7.2.1 Primary Decomposition

For a radical ideal an irredundant primary decomposition is uniquely determined; it
is just the intersection of all minimal prime ideals of the ideal. Therefore our next
goal is to determine the minimal prime ideals of a binomial edge ideal.

For each subset W C [r] we define a prime ideal Py (G). Let T = [n] \ W, and
let G1, ..., G¢w) be the connected components of Gr. Here Gr is the induced
subgraph of G whose edges are exactly those edges {i, j} of G for which i, j € T.
For each G; we denote by G; the complete graph on the vertex set V (G;). We set

Py (G) = (| Jxi, yid Jg, - ).
ieW

. JGC(W)

In particular, J6 = Py(G), if G is complete.
Lemma 7.14 The ideal Py (G) is a prime ideal.

Proof We first reduce the polynomial ring S modulo the variables appearing in
Py (G), to obtain the polynomial ring S’ and a prime ideal P C S’ such that
S/Pw(G) =S'/P. Furthermore, P is of the form (P; + -+ 4+ Pew))S’ with
P = P@(éi) C S;, where the G;’s are complete graphs in disjoint sets of vertices,
and where the S; are polynomial rings over K in the corresponding variables. We
prove by induction on i, that §'/(P; + --- + P;)S’ is a domain. For i = 1, this
follows from Problem 7.7. Leti > 1l andset B=T/(P1 +---+ Pi_1)T, where T
is the polynomial ring over K in the variables of the polynomial rings Sy, ..., S;i_1.
Then

Blxj,y; : j€V(G)I/PiBlxj,yj:j€ V(Gi)]
=Tlxj,yj: jeVGH/(PL+---+ P)T[xj,yj: j € V(G

From Problem 7.7 it follows that B[x;, y;: j € V(G)]/PiBlxj,y;: j € V(G))],
and hence also

A=Tlxj,yj: jeV(G)I/(P1+---+ P)Tlxj,yj: j € V(G)]
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is a domain. This yields the desired conclusion, since S’/(P; + --- + P;)S’ is just a
polynomial extension of A. O

Lemma 7.15 We have height Py (G) = |[W| 4+ (n — c(W)).
Proof The height of Py (G) can be computed as follows: letn; = |V (G;) <. Then

c(W) c(W)
height Py (G) = height(U {xi, yi}) + Z height /5, = 2|W| + Z (nj—1)
iew j=1 j=1
(W)
= WI+(W|+ > nj)—c(W) = W[+ (n — c(W)),
j=1
as required. O

It is a general fact that all associated prime ideals of a binomial ideal in
K[x1,...,x,] with K algebraically closed are binomial ideals in the sense that its
generators are of the form u — Av with ¥ and v monomials and & € K with K the
base field, see [58, Theorem 5.1]. In our particular case we have

Theorem 7.16 Let G be a graph on the vertex set [n]. Then Jg = ch[n] Pw (G).

Proof 1t is obvious that each of the prime ideals Py (G) contains Jg. We will show
by induction on n that each minimal prime ideal containing J¢ is of the form Py (G)
for some W C [n]. Since by Corollary 7.13, Ji is a radical ideal, and since a radical
ideal is the intersection of its minimal prime ideals, the assertion of the theorem will
follow.

Let P be a minimal prime ideal of J;. We first show that x; € P if and only
yi € P. For this part of the proof we may assume that G is connected. Indeed,
if Gy, ..., G, are the connected components of G, then each minimal prime ideal
P of Jg is of the form P; + --- + P, where each P; is a minimal prime ideal of
Jg;, see Problem 7.8. Thus if each P; has the expected form, then so does P. Let
T ={x;:i €[n],x; € P,y; ¢ P}. We will show that T = ¢. This will then imply
thatif x; € P, then y; € P. By symmetry it also follows that y; € P implies x; € P,
so that the final conclusion will be that x; € P if and only y; € P.

We first observe that T # {x1, ..., x,}. Because otherwise we would have Jg C
Je © (x1, ..., x4) C P, and P would not be a minimal prime ideal of Jg.

Suppose that T # @. Since T # {x1, ..., x,}, and since G is connected there
exists {i, j} € E(G) suchthat x; € T butx; ¢ T. Since x;y; —x;y; € Jg C P,
and since x; € P it follows that x;y; € P. Hence, since P is a prime ideal, we have
xj € Pory; € P.By the definition of T the second case cannot happen, and so
xj € P.Since xj € T, it follows that y; € P.

Let G’ be the induced subgraph of G with vertex set [1n] \ {;}. Then

(Jg', xj,yj) = (Jg, xj,yj) C P.



7.2 Primary Decomposition of Binomial Edge Ideals and Cohen-Macaulayness 187

Thus P = P /(xj, yj) is a minimal prime ideal of Jg' with x; € P but y; & P for
all x; € T C P. By induction hypothesis, P is of the form Py (G’) for some subset
W C [n]\ {j}. This contradicts the fact that T £ @.

Now let G be again an arbitrary simple graph. By what we have shown it
follows that there exists a subset W C [n] such that P = (UieW{x,-, vi}, 13)
where P is a prime ideal containing no variables. Let G’ be the graph G, w.
Then reduction modulo the ideal (Uiew{xi, vi}) shows that P is a binomial
prime ideal Js which contains no variables. Let G1, ..., G, be the connected
components of G’. We will show that P = (J TR JG(.)' This then implies that
P =(Uewlxi yi}, JG~I, e JGC)’ as desired.

To simplify notation we may as well assume that P itself contains no variables
and have to show that P = (J R ) where G1, ..., G. are the connected
components of G. In order to prove thls we claim that ifi, j w1th i < jisanedgeof
Gk for some k, then f;; € P.From this it will then follow that (Jz e J~ C) C P.
Since (/. TR J(;() is a prime ideal containing J¢, and P is a minimal prime ideal
containing Jg, we conclude that P = (J5 , ..., Jg )

Leti = ip,i1,...,i, = j be a path in Gk from i to Jj. We proceed by induction
on r to show that f, j € P. The assertion is trivial for » = 1. Suppose now that
r > 1. Our induction hypothesis says that f; ; € P. On the other hand, one has
Xi fij = xjfii, + xi fi,j. Thus x;, f;; € P. Since P is a prime ideal and since
xi; & P, weseethat f;; € P. O

Lemma 7.15 and Theorem 7.16 yield the following
Corollary 7.17 Let G be a graph on [n]. Then

dim S/Jg = max{(n — |W|) +c(W) : W C [n]}.

In particular, dim S/Jg > n + ¢, where c is the number of connected components

of G.

In general, the inequality given in Corollary 7.17 is strict. For example, if G is a
claw, then dim §/Jg = 6. On the other hand, we have

Corollary 7.18 Let G be a graph on [n] with ¢ connected components. If S/ Jg is
Cohen—Macaulay, then dim S/Jg = n + c.

Proof Since Py(G) does not contain any monomials, it follows that Py (G) Q
Py(G) for any nonempty subset W C [n]. Thus Theorem 7.16 implies that Py(G)
is a minimal prime ideal of Jg. Since dim S/ Py(G) = n + ¢ and since S/Jg is
equidimensional, the assertion follows. m]

Now the question arises which of the prime ideals Py (G) are minimal prime
ideals of Js. The following result is the first important step to detect them.

Proposition 7.19 Let G be a graph on [n], and let W and T be subsets of [n]. Let
G, ..., Gy be the connected components of Giu\w, and Hy, ..., H; the connected
components of Gu\t. Then the following conditions are equivalent:
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(i) Pr(G) C Pw(G);
(i) T C Wandforalli =1,...,tonehas V(H;))\ W C V(G}) for some j.

Proof For a subset U C [n] we let Ly be the ideal generated by the
variables {x;, y;: i € U}. With this notation introduced we have Py (G) =

(Lw, JG~1, "'*JGS) and Pr(G) = (LT’]ﬁl""’Jﬁt)' Hence it follows that
Pr(G) C Pw(G), if and only if T C W and (Lw, Jﬁl’ R J;II) C
(Lw, JG]’ e JGS)'

Observe that (Lw, Jy ..., Jg) = (Lw, Jﬁ{, A Jg/) where H] = (H;)u\w-
It follows that Pr(G) C Pw(G) if and only if (Lw, Jﬁf’ e Jg/) C
(Lw, JG~1, e, Jf?x) which is the case if and only if (JI:I{’ e, JFI,’) C
(]G~1, el JGS)’ because the generators of the ideals (]I-'I{’ el JFI/) and
(Jdl, A J(;X) have no variables in common with the x; and y; fori € W.

Since V(Hi/ ) = V(H;) \ W, the equivalence of (a) and (b) will follow once we
have shown the following claim: let Ay, ..., Ay and By, ..., B; be pairwise disjoint

subsets of [n]. Then
(‘]A~|""’Jz‘§s) C (JEN""JE,)’

if and only if foreachi =1, ..., s there exists a j such that A; C B;.

It is obvious that if the conditions on the A; and B; are satisfied, then we have
the desired inclusion of the corresponding ideals.

Conversely, suppose that (J~l, R JA,) C (J~l, e, JI?r)' Without loss of
generality we may assume that U;zl B; = [n]. Consider the surjective K -algebra
homomorphism

€: 8 — K[{xi, xiz1}ieBy» -+ (Xis Xize}ies, ] C Klx1, ..o, xn, 20505 2¢]
with €(x;) = x; foralli and €(y;) = x;zj fori € Bjand j =1, ...,¢. Then
Ker(e):(Jél,...,Jé,).

Now fix one of the sets A; and let k € A;. Then k € B; for some k. We claim that
A; C Bj.Indeed, let £ € A; with £ # k and suppose that £ € B, with r # j. Since
Xk Ye — XoVk € JA,- C (J[?.’ R Jét)’ it follows that x; y, — x¢yx € Ker(e), so that
0 = e(xkye — xeyk) = XpX¢zj — XpX¢Zr, a contradiction. m]

A vertex of G is called a cut point of G, if G has less connected components than
Gap\{i)- With this concept introduced, the final result regarding the minimal prime
ideals can be formulated. For this purpose we may restrict ourselves to the case that
G is connected, see Problem 7.8.

Theorem 7.20 Let G be a connected graph on the vertex set [n], and W C [n].
Then Pw(G) is a minimal prime ideal of Jg if and only if W = @, or W # ( and
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foreachi € W one has c(W \ {i}) < c(W). In other words, this is the case, if and
only if each i € W is a cut point of the graph G [\ w)uii}-

Proof Assume that Py (G) is a minimal prime ideal of Jg and fix i € W. Let
G1, ..., G, be the connected components of G, w. We distinguish several cases.

Suppose that there is no edge {i, j} of G such that j € Gy for some k. Set
T = W\ {i}. Then the connected components of G, )\t are G1, ..., G, {i}. Thus
c(T) = c(W) + 1. However this case cannot happen, since Proposition 7.19 would
imply that Pr(G) C Pw(G).

Next suppose that there exists exactly one Gy, say G, for which there exists
J € Gy such that {7, j} is an edge of G. Then the connected components of G\
are G, Ga, ..., G, where V(G)) = V(G1)U{i}. Thus ¢(T) = ¢(W). Again, this
case cannot happen since Proposition 7.19 would imply that Pr (G) C Pw (G).

It remains to consider the case that there are at least two components, say
Gi,...,Gp, k = 2,and j, € Gy for £ = 1,...,k such that {7, j;} is an edge
of G. Then the connected components of G,)\7 are G’l, Gi+1, ..., Gr, where
V(G) = Ulzf:] V(G¢)U{i}. Hence in this case c(T) < c(W).

Conversely, suppose that c(W \ {i}) < ¢(W) for all i € W. We want to show
that Py (G) is a minimal rime ideal of Jg. Suppose this is not the case. Then there
exists a proper subset T C W with Pr(G) C Pw(G). We choosei € W\ T. By
assumption, we have c(W \ {i}) < c¢(W). The discussion of the three cases above
shows that we may assume that G’l, Gi+1, ..., G, are the components of G)\(i})
where V(G)) = U'E=1 V(G¢)U{i} and where k > 2. It follows that Gp,\r has one
connected component H which contains G’l. Then V(H) \ W contains the subsets
V(G1) and V(G»). Hence V(H) \ W is not contained in any V(G;). According to
Proposition 7.19, this contradicts the assumption that Py (G) C Pw (G). O

The following example demonstrates Theorem 7.20.

Example 7.21 Let G be the path with n vertices. Then, for the monomial order
used in Theorem 7.2, the initial terms xqy»2, x2y3, ..., X,—1Y, of the generators
form a regular sequence, and hence in.(Jg) is generated by these monomials,
see Corollary 1.30. In particular, S/ in.(Jg) is Cohen—Macaulay. This implies that
S/ Jg itself is Cohen—-Macaulay, see Theorem 2.19. It follows from Corollary 7.18
that dim S/P = n + 1 for all minimal prime ideals of Jg. Let W be any subset of
[n]. Then Theorem 7.16 and Corollary 7.17 imply that the minimal prime ideals of
Ji are exactly those prime ideals Py (G) for which ¢(W) = |[W|+ 1. Let W C [n].
Then there exists integers 0 <a; — 1l <bj <ay—1<by<az3—1<b3 <--- <
a, — 1 < b, < n such that

-
W= U[a,-,b,-] where foreach i, [a;,bil={j €Z:a; < j < b;}.
i=1
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We see that |[W| =) ";_,(bi —a; + 1) = Y_;_,(bi — a;) + r, and that

r—1, ifag=1and b, = n,
c(Wy=13r, ifa; #1and b, =n, ora; = 1 and b, # n,
r+1, ifa; # 1 and b, # n.

Thus ¢(W) = |[W| + 1 if and only if a; # 1, b # n and a; = b; for all i. In other
words, the minimal prime ideals of G are those Py (G) for which W is a subset of
[n] of the form {a1, a2, ...,a,;} with 1 < aj,a, <nanda; < a;j41 — 1 foralli.

Let T C V(G).Ifeachi € T is a cut point of the graph G )\ r)uyi)» then we say
that T has the cut point property for G. We denote by ¢’ (G) the setof all T C V(G)
such that 7" has the cut point property for G. By Theorem 7.20, Pr (G) is a minimal
prime ideal of Jg if and only if T € €' (G).

For later applications we need the following result.

Proposition 7.22 Let G be a graph on [n] and v € V(G). The following conditions
are equivalent:

(1) There exists T € €(G) such thatv € T;
(ii) v is not a simplicial vertex of A(G).

Proof (i) = (ii): Let us assume that v is a simplicial vertex and let F' be the unique
facet of A(G) suchthatv € F.If T D F \ {v}, then ¢(T \ {v}) > ¢(T) since,
by removing v from T', we get a new connected component in G\ (7\{v}), Damely
a trivial component which contains only the vertex v. On the other hand, if there
exists u € (F \ {v}) \ T, then u belongs to some connected component of Gp,)\7.
In this case, we get ¢(T \ {v}) = ¢(T) since if we remove v from T, as u, v are
adjacent, then v belongs to the same connected component as u in G\ (7\{v})-

Therefore, in any case, we get c¢(T \ {v}) > ¢(T'), which is in contradiction to (i).

(i) = (i): Let us assume that v ¢ T for every T € %(G). This implies that
the indeterminates x, and y, do not belong to any minimal prime ideal of Jg.
Consequently, x, and y, are regular on S/Jg. Since v is not a simplicial vertex of
A(G), it follows that v belongs to at least two different maximal cliques of G. In
particular, we may find two vertices u, w of G such that {u, v}, {v, w} € E(G) and
{u, w} ¢ E(G).

It follows that xy, (X, yy — XpYu) — Xu (XwYv — XoYw) = Xv(XuYw — Xwlu) € JG.
As x, is regular on S/Jg, we get x,yy — XuwYy € Jg which is impossible since
{u, w} ¢ E(G). O

7.2.2 Cohen—-Macaulay Binomial Edge Ideals

In general it is hard to identify Cohen—Macaulay binomial edge ideals. A full
classification of such ideals seems to be impossible. However for closed graphs
a complete answer can be given. We first show



7.2 Primary Decomposition of Binomial Edge Ideals and Cohen-Macaulayness 191

Proposition 7.23 Let G be a connected graph on [n] which is closed with respect
to the given labeling. Suppose further that G satisfies the condition that whenever
{i, j+ 1} withi < jand {j, k 4+ 1} with j < k are edges of G, then {i, k + 1} is an
edge of G. Then S/ Jg is Cohen—Macaulay.

Proof We will show that S/ in.(Jg) is Cohen—Macaulay. This will then imply that
S/Jg is Cohen—Macaulay as well.

Since the graph is closed, it follows from Theorem 7.2 that in_ (J) is generated
by the monomials x;y; with {i, j} € E(G) andi < j. Applying the automorphism
¢: § — § which maps each x; to x;, and y; to y;_1 for j > 1 and y; to y,, in.(Jg)
is mapped to the ideal generated by all monomials x;y; with {i, j+1} € E(G). This
ideal has all its generators in 8" = K[x1, ..., Xy—1, Y1, ..., Yu—1]. Let I C S’ be
the ideal generated by these monomials. Then S/ in-(Jg) is Cohen—Macaulay if
and only if §’/I is Cohen—Macaulay. Note that I is the edge ideal of the bipartite
graph I' on the vertex set {x1, ..., X,—1, Y1, ..., Ya—1}, and with {x;, y;} € E(I")
if and only if {i, j + 1} € E(G). Now we use the result from [92] that Cohen—
Macaulay bipartite graphs are characterized as follows: suppose the edges of the
bipartite graph can be labeled such that

(1) {x;,y;}areedgesfori =1,...,n;
(ii) if {x;, y;} is an edge, theni < j;
(iii) if {x;, y;} and {x;, yx} are edges, then {x;, y¢} is an edge.

Then the corresponding edge ideal is Cohen—Macaulay.

We are going to verify these conditions for our edge ideal. Condition (ii) is
trivially satisfied, and condition (iii) is a consequence of our assumption that
whenever {i, j + 1} withi < j and {j, k 4+ 1} with j < k are edges of G, then
{i, k + 1} is an edge of G.

For condition (i) we have to show that {i, i +1} € E(G) for all i. But this follows
from Problem 7.1. |

Examples 1

(a) Any complete graph satisfies the conditions of Proposition 7.23, so that S/Jg
is Cohen—Macaulay. But of course this is known before because in this case Jg
is the ideal of 2-minors of a generic 2 x n-matrix.

(b) The graph G with edges {1, 2}, {1, 3}, {2, 3}, {2, 4}, and {3, 4} does not satisfy
the conditions of Proposition 7.23. However, G is closed. But in. (Jg) and Jg
are not Cohen—Macaulay.

(c) A graph G need not be closed for S/Js being Cohen—Macaulay. The tent
displayed in Figure 7.3 is such an example.

Now we come the classification of closed graphs whose binomial edge ideal is
Cohen—Macaulay.

Theorem 7.24 Let G be a connected graph on [n] which is closed with respect to
the given labeling. Then the following conditions are equivalent:

(1) Jg is unmixed;
(ii) Jg is Cohen-Macaulay;
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(iii) in<(Jg) is Cohen-Macaulay,

(iv) G satisfies the condition that whenever {i, j + 1} withi < j and {j, k + 1}
with j < k are edges of G, then {i, k + 1} is an edge of G;

(V) there exist integers | = a) < ay < --- < ar < ar41 = n and a leaf order of
the facets Fi, ..., Fr of A(G) such that F; = [a;, aj+1] foralli =1,...,r.

Proof We begin by proving (i) = (iv). By Theorem 7.7, A(G) has facets Fi, ..., F;
where each facet is an interval. We may order the intervals F; = [a;, b;] such that
1l=ay <ay <--- <ar < b, =n.Since G is connected it follows that a; ] <
b; for all i. Let W = [a,, b,—1]. Then Py (G) is a minimal prime ideal of Jg
since W has the cut point property. Moreover, c(W) = 2, and so by Lemma 7.15,
height Pw(G) = n+ (by—1 —ar +1) =2 =n + (b,—1 — a;) — 1. On the other
hand, height Ps(G) = n — 1, since G is connected. Thus our assumption implies
that n + (b,_; — a,) — 1 = n — 1 which implies that b, _| = a,. Let G’ be the
graph whose clique complex A(G’) has the facets Fy, ..., F,_. Let Py (G’) be a
minimal prime ideal of G’. Then Proposition 7.22 implies that b,_; & W. Therefore,
cg'(W) = cg(W), and hence Py (G) is a minimal prime ideal of Js of same height
as Pw (G"). Thus we conclude that J5 is unmixed as well. Induction on r concludes
the proof.

In the sequence of implications (v) = (iv) = (iii) = (ii) = (i), the second
follows from the proof of Proposition 7.23, and the third and the fourth are well
known for any ideal.

It remains to prove (v) = (iv). Let i < j < k be three vertices of G such that
{i, j + 1} and {j, k + 1} are edges of G. Then i and j + 1 belong to the same facet
of A(G), let us say to Fy. Then k + 1 must belong to Fy as well since it is adjacent
to j. Therefore, the condition from (iv) follows. |

Closed graphs with Cohen-Macaulay binomial edge ideal have the following nice
property.

Proposition 7.25 Let G be a closed graph with Cohen—Macaulay binomial edge
ideal, and let < be the monomial order introduced in Theorem 7.2. Then B;;(Jg) =
Bij(in.(Jg)) foralli and j.

Proof We first assume that G is a connected. For a graded S-module W we denote
by Bw (s, 1) =Y, ; Bij(W)s't/ the Betti polynomial of W.

Since in-(Jg) is Cohen—Macaulay, it follows from Theorem 7.24 that [n] =
Uieilak, ax+1] with 1 = a; < a» < ... < ar < ar41 = n and such that each
Gk = Glgy,a,1) 18 @ complete graph. It follows that in. (/) is minimally generated
by the set of monomials | J;_; My where My = {x;y;: ax <i < j < ap41} forall
k. Since for all i # j, the set of monomials of M; and M; are monomials in disjoint
sets of variables, it follows that Tory (S/(M;), S/(M;)) = O for all i # j and all
k > 0. From this we conclude that

.
Bs/inug) (s, 1) = l_[ Bg/m;) (s, 1).

i=1
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Since Tor (S/(M;), S/(M;)) = Oforall k > 0, and since in< (Jg,) = (M;) forall i,
we see that Tory (S/Jg,, S/J(;j) = O for all k > 0 as well, see [24, Proposition 3.3].
Thus we have

r
Bsyig (s, 1) = [ [ Bsysg, (5 1)
i=1

Hence it remains to be shown that if G is a complete graph, then B;;(Jg) =
Bij(in(Jg)) for all i and j. By Problem 2.15 we know that in_ (Ji) has a linear free
S-resolution. Since for any graded ideal 8;;(I) < B;;j(in. (1)) (see Theorem 2.19),
we conclude that Js has a linear resolution. By Problem 2.11, the Betti numbers
of an ideal with linear resolution are determined by the Hilbert function of the
ideal. Now since, Hilbg,;(t) = Hilbg/iy_(s)(t) (see Proposition 2.6), the desired
conclusion follows.

Finally assume that G is not connected, and let G, ..., G, be the connected
components. Then in(J;) and in(G ;) are monomials in distinct sets of variables.
Hence we may use arguments similar as before to reduce the proof of the theorem
to the case that G is connected. |

Proposition 7.25 yields

Corollary 7.26 Let G be a closed graph with Cohen—Macaulay binomial edge
ideal, and assume that Fy, ..., F, are the facets of A(G) with ki = |F;| for
i =1,...,r. Then the Cohen-Macaulay type of S/Jg is equal to []i_, (ki — 1). In
particular, S/Jg is Gorenstein if and only if G is a path graph.

Proof Due to the proof of Proposition 7.25 it suffices to show that if G is a complete
graph on [n] (with n > 2), then the Cohen—Macaulay type of §/Jg is equal ton — 1.
In this particular case, Jg is the ideal of 2-minors of a 2 x n-matrix whose resolution
is given by the Eagon—Northcott complex. The type of S/ Jg is the last Betti number
in the resolution, whichisn — 1. O

Problems

7.6 Let G be a graph and v € V(G). Show that W = {v} has the cut point property
for G if and only if there exists u, w € V(G) with u, w # v such that v is in every
path of G which connects # and w.

7.7 Let K, be the complete graph on [n], and let B be a domain. Show that
Blxt, ... Xns Y15 - s Ynl/Py(Kn)Blx1, ..., Xn, Y1, - - -, Yn] is a domain.

7.8 Let G be a graph on [rn] and Gy, ..., G, be its connected components. Let
T C[n],andset T; = TNV (G;) fori =1,...,r. Show

() Pr(G)=3_i_; Pr,(G)S.
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(i) Pr(G) is a minimal prime ideal of Jg if and only if each Pr,(G;) is a minimal
prime ideal of Jg;.

7.9 Show that Jg is a prime ideal if and only if its connected components of G are
complete graphs.

7.10 Let C, be the n-cycle. Compute the minimal prime ideals of J¢, and count
them.

7.11 What are the minimal prime ideals of J; when G is a complete bipartite
graph?

7.12 Determine the number of minimal prime ideals of a path graph.

7.13 Give an example of a graph G for which Jg is unmixed, but S/Jg is not
Cohen—Macaulay.

7.14 A graph G is called a block graph, if it is chordal and any two distinct maximal
cliques intersect in at most one vertex. Show that if G is a block graph on [r] with
¢ connected components, depth S/Jg = n + c.

7.15 Let G be a block graph. Use Problem 7.14 to show that the following
statements are equivalent:

(i) Jg is unmixed.
(i) Jg is Cohen—Macaulay.
(iii) Each vertex of G belongs to at most two cliques.

7.3 On the Regularity of Binomial Edge Ideals

In general it is quite difficult to describe the resolution of a binomial ideal. The
graded Betti numbers give the numerical data of the resolution and determine the
regularity and projective dimension of the ideal. In this section we give lower and
upper bounds of the regularity of a binomial edge ideal. But first we address the
question of when a binomial edge ideal has linear relations or has a linear resolution.

7.3.1 Binomial Edge Ideals with Linear Resolution

As in the previous section we let G be a finite graph on the vertex set [n], K a
field, Jc C S = K[x1, ..., Xy, Y1, --., Ynl the binomial edge ideal of G and < the
lexicographic order induced by x; > x2 > -+ > x;, > y1 > y2 > -+ > Y.

In what follows it is useful to note that Jg is naturally Z"-graded by setting
deg x; = deg y; = €;, where ¢; is the ith unit vector of Z".
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Theorem 7.27 Let G be a graph. Then the following conditions are equivalent:

(i) Jg has a linear resolution;
(i) Jg has linear relations;
(iii) in<(Jg) is generated in degree 2 and has linear quotients,
(iv) in.(Jg) has a linear resolution;
(v) G is a complete graph.

Proof We notice that (iii) implies (iv), by Proposition 2.11, that (iv) implies (i), by
Theorem 2.19, and of course (i) implies (ii).

(ii) = (v): Let F be the graded free S-module with basis elements ¢;; for {7, j} €
E(G), and let ¥y : F — Jg be the epimorphism with v (e;;) = fi; forall {i, j} €
E(G). We set dege;; = ¢; + ¢; for all {i, j} € E(G). Then ¢ is a Z"-graded
epimorphism, and hence Z| = Ker ¢ is a Z"-graded S-module.

Assume that G is not complete. Then G contains a path over three vertices as an
induced subgraph. Let {i, j, k} be the vertices of this induced subgraph of G with
edges {i, j} and {j, k}. We may assume that i < j < k. We show that the degree
4 element r = fijejx — fjreij of Z1 cannot be reduced by elements of degree 3.
Then we have g 4(Jg) > 0, and hence Jg does not only have linear relations which
contradicts our assumption.

Indeed, the relation r has multidegree €; +2¢; +&. If it is not a minimal relation,
it must be reduced by generating relations of degree 3 involving basis elements eg;
with s # ¢ and s,t € {i, j, k}. Since the path with edges {i, j} and {j, k} is an
induced subgraph of G, {i, k} is not an edge of G. Thus the degree 3 relation must
be a relation involving only ¢;; and e ;. But there is no such relation of degree 3,
because f;; and fjx form a regular sequence.

(v) = (iii): It follows from Theorem 7.10 that G is a closed graph. Hence
in. (Jg) is generated by the monomials x;y; with 1 < i < j < n. We order the
generators in lexicographical order induced by x; > xp > --- > x;, > y1 > ¥ >

- > y,. So, we have

X1Y2 > X1Y3 > > X1Yn > X2Y3 > X2Y4 > - > X2V > -+ > Xp—1Yn-

Weletuy, ..., ) be the generators of in- (Ji) as listed above, thatis, u; > --- >
wey, and claim that for each i, the ideal (u1, ..., u;—1) : u; is generated by a set of
variables. This then implies that in_ (Js) has linear quotients.

Note that the set of monomials {u;/gcd(u;,u;): 1 < j < i — 1} is the set

of monomial generators of (#1...,u;—1) : u;. Foreach 1 <[ < n — 2, the ideal

(X1Y2, s X1Vns X2V3 oo e s X2Vns o« s XIVI41s - - - » X1Vn) © X14+1Yi4+2 1s generated by

the set {xy, ..., x;}, while foreach1 </ <n —2and! <t <n — 1, the ideal
(xlyZ» e s XY X2Y3 oo s X2Vns v e o s XIVIHLy o v vy xl)’t) : X1 Yt+1

is generated by the set {x1, ..., x;—1, Yi+1, - - ., Y¢}. This completes the proof of the

implication (v) = (iii) and proof of the theorem. |
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7.3.2 A Lower Bound for the Regularity

Our next goal is to present a lower and an upper bound for the regularity of
a binomial edge ideal. Let Gy, ..., G, be the connected components of G. It
is obvious that if S; is the polynomial ring in the indeterminates indexed by
the vertex set of G;, then S/Jg = ®;=1(Si/JG,~)- Therefore, reg(S/Jg) =
Y i reg(Si/Jg,;). This equality shows that it is enough to consider connected
graphs. The reader may then easily derive the bounds for the regularity of binomial
edge ideals for arbitrary graphs.

Let G be a graph. An induced path of G is defined to be an induced subgraph of
G which is isomorphic to a path graph.

Theorem 7.28 Let G be a connected graph on [n], and let £ be the length of the
longest induced path of G. Then we have:

(a) reg(Jg) = ¢+ 1.
(b) If G is closed, then reg(Jg) = reg(in<(Jg)) =€ + L.

Proof (a) We will use that

Bij(Jg) = Bij(Jgy)

for any subset W C [n], where G is the induced subgraph on W. This inequality
is an immediate consequence of the subsequent Lemma 7.30.

Now let P be an induced path of G of length €. The binomial edge ideal of any
path is generated by a regular sequence of binomials of degree 2 (see Problem 7.3).
Thus, reg(Jp) = £ + 1. Since reg(Jg) > reg(Jp), the desired result follows.

The proof of (b) of needs more preparations and will be postponed. O

Remark 7.29 1In the proof of part (a) we did not use that G is connected. Actually, if
G has the connected components G1, ..., G, with longest induced paths of length
L1, ..., £, respectively, then (a) can be improved to obtain: reg(Jg) > €1 + --- +
£, + 1. For the proof one uses the result of part (a) and arguments as in the proof of
Proposition 7.25.

Leta = (ay,...,ay) € Z", we define the support of a as the set
supp(a) = {i: a; # 0}.
Lemma 7.30 Let W C [n]. Then for all a € Z* with supp(a) C W one has
Bi.a(Jg) = Bia(Jgy)-
Proof Let

F: o> P S-afin > ... > P saf* > -0

acZ" aeZ’
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be the Z"-graded minimal free resolution of S/Jg, and consider the subcomplex

F:o» @ Safies...> P S-aftr—s-o0.

aezZ" aezZh
supp(a)CW supp(a)CW

We claim that F’ is a minimal Z"-graded free resolution of S/Jg,, . It is clear that

JGy is the image of @ aczr S (—a)#1a — §. Next we show that F” is acyclic. To
supp(a)CW

prove this, it suffices to show that the Z"-graded component F}, is acyclic for any
a € 7" with supp(a) C W. Indeed, let a € Z" with supp(a) C W. Since, for any
b € 7", S(—b), is nonzero if and only if all components of a — b are nonnegative,
it follows that F = F. This implies that I}, is acyclic. Finally, F’ is minimal since
[F is minimal. |

We now turn to the proof of Theorem 7.28(b). For this purpose we have to better
understand the initial ideal of Jg when G is closed. We may assume that G is closed
with respect to the given labeling of the vertices. In that case we have that

inc(Jg) = (x;jyj: {i, j} € E(G))

is the edge ideal of a bipartite graph on the vertex set {x, ..., x,}U{y1, ..., yn}.
We denote this bipartite graph by in- (G).

A finite simple graph H is called weakly chordal if every induced cycle of H and
of the complementary graph H has length at most 4.

Lemma 7.31 Let G be a connected closed graph on [n]. Then the bipartite graph
in. (G) is weakly chordal.

Proof We set H = in_(G). That H has no induced cycle of length > 5 is easy to
see. Indeed, this is due to the fact that H consists of two complete graphs, say Ky
on the vertex set {x1, ..., x,} and K, on the vertex set {y, ..., y,}, together with
the edges {x;y; :i > j}U{x;y; :i < J, {i, j} ¢ E(G)}. Hence, if C is an induced
cycle of H of length > 5, then C contains at least three vertices either from K, or
from K;, . Thus it cannot be an induced cycle of H.

It remains to be shown that H has no induced cycle of length > 5. Assume that
this is not the case. Then there exist an integer kK > 3 and an induced cycle C of H
with vertices x;,, yj;, ..., Xi;, ¥j, (labeled clockwise). Then {iy, j¢} and {iz11, je}
are edges of G for I < ¢ < k, where we made the convention that iyy; = ij.
Furthermore, since G is closed and since ig+1 < jg, je+1 and jo > ig, ig4+1 We also
have that {i¢, i¢+1} and {j¢, je4+1} areedgesof G for £ =1, ... k.

We may assume that i; < i>. Suppose there exists £ such that iy < jey1 < Jjo.
Since {i¢, je} and {j¢, je+1} are edges of G and since G is closed, it follows that
{i¢, je+1} € E(G) which implies that {x;,, y;,,,} € E(H). This is a contradiction,
since C is an induced subgraph of H. Similarly, i¢+1 < iy < jg is impossible.
Therefore, for all £, we must have either iy < ip+1 < jo < je41 O ig+1 < Jog1 <
ip < je. Asiy < ip, we may choose ¢ to be the largest index such that i; < i;y.
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Thus, we geti; < iy+1 < ji < jr41 and i;12 < jiy2 < iy41 < jr+1, which implies
that iy o < jrg2 < i1 < jr < jrg1. Since {iry2, jr+1} and {j;, jr41} are edges of
G and G is closed, we obtain {i; 2, j:} € E(G) which leads to {x;,,, y;,} € E(H),
again contradicting the assumption that C is an induced cycle. O

Let I be an arbitrary simple graph. An induced matching of I' is an induced
subgraph of I" which consists of pairwise disjoint edges. The induced matching
number of I', denoted indmatch(I"), is the number of edges in a largest induced
matching of I".

The following result is crucial for the proof of Theorem 7.28(b).

Proposition 7.32 Let G be a connected graph on [n] which is closed with respect
to the given labeling. Then

indmatch(in_ (G)) = ¢,

where £ is the length of the longest induced path of G.

Proof We set H = in_(G). First we show that indmatch(H) > £. This follows
easily since it is obvious that if io, ..., i¢ is an induced path in G of length £, then
the edges

{xi()a yil}a {xils yiz}» e {xil_ls yig}

form an induced subgraph of H.

We show now that indmatch(H) < {. Let indmatch(H) = m. Then H has m
pairwise disjoint edges {x;,, y;,}, ..., {Xi,, yj,} that form an induced subgraph of
H. To show the desired inequality we construct a path of length m in G.

As G is closed, we may assume, as we have seen in Theorem 7.7, that all the
facets of the clique complex of G are intervals. We denote by Z the set of induced
matchings of H of the form {xii s Ytk s {x,-;n, ¥j.}> where we fix y;,,...,¥j,,
and define a partial order on Z by setting

{xiir yj1}9 ey {xi;n5 y]m} = {x[i/v Yj1}7 e {xi;;lr y]m}y
ifand only if i < i) fork=1,...,m.
Since Z is a non-empty finite set, we may choose a minimal element in & which
we may call again {x;, v}, ..., {xi,, y),}. After a reordering of the edges of this

induced matching we may further assume that i; < iy < --- < iy,. Then iy > s for
all s, and hence by construction it follows that

i, Yk oo X Vi
is an induced matching, satisfying the following condition:

(%) foralll <s <m, ift <sand{¢, j;} € E(G), then
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i, yinks oA yich i Vi b - oo s Vi)

is not an induced matching of H.

Note that we also have j; < i;yq forall 1 <t < m — 1. Indeed, if there exists ¢
such that j; > i;41, then it follows that i; < i;11 < j;. We obtain {i;y1, j:} € E(G)
and {x;,,,, y;} € E(H), a contradiction to our hypothesis.

Next we show that, under condition (*) for the induced subgraph {x;,, y;},

oy {xiy, vj, ) of H, we have:

(1) is and iz41 belong to the same clique of G forall 1 <s <m — 1,
(i) iy, is+1, is+2 do not belong to the same clique forany 1 < s <m — 2.

Let us assume that we have already shown (i) and (ii). Then L : i1, i2, ..., im, jm
is an induced path of G. Indeed, by (i), L is a path in G. Next, it is clear that we
cannot have an edge {is, i;} € E(G) with g —s > 2 by (ii). In addition, {i, j,} ¢
E(G) forany 1 < s < m — 1, since otherwise it follows that {x; ,y;,} € E(H)
because iy < i, < jm. This is a contradiction. Therefore, L is an induced path of
G.

Let us first prove (ii). Suppose that there are three consecutive vertices
is,is+1, is4+2 in L which belong to the same clique of G. Hence {is, is42} € E(G).
As iy < Js < lst1 < Js+1 = is42 < Js+2, we also have {is, js+1} € E(G), which
is impossible.

Finally, we show (i). Let us assume that there exists s such that i; and i541 do not
belong to the same clique of G, in other words, {is, is+1} ¢ E(G). In particular, we
have iy < j; < isz+1. We need to consider the following two cases.

Case (a). {Jjs,is+1} € E(G). We claim that

i i ks oo i yich s Vg b (Xigs Vi s oo o Xy Y}

is an induced subgraph of H with pairwise disjoint edges. This will lead to
a contradiction since indmatch(H) = m. To prove our claim, we note that
(%) Vien) & E(H) by () and (xi,. yi,,,) ¢ E(H) since {is,ist1) ¢ E(G).
Moreover, if {x,'q, Yis1) € E(H) for some g < s, then, as we have i; < iy <
Js < ist+1, we get {ig, js} € E(G), thus {x; , yj} € E(H), a contradiction.
Similarly, if {x},, yjq} € E(H) forsome g > s +2, a8 js <igy1 <iyg < jg, We
get {is+1, jg} € E(G), thatis, {x;,,, yj,} € E(H), again a contradiction.

Case (b). {Jjs,is+1} ¢ E(G). Letthen j = min{r : {¢,i54+1} € E(G)}. Since G is
closed, we must have j > j; > i;. Let us consider the following disjoint edges
of H :

P vk i ik g i b g Vi - Wi Yl

These edges determine an induced subgraph of H, which leads again to a
contradiction to the fact that indmatch(H) = m. Indeed, since j < is4q, it
follows that {J, js+1} ¢ E(G). As in the previous case, we get {x;,, yi,,,} ¢
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E(H) forq < s.Letus assume that {x;, y;, } € E(H) for some g > s + 2. Then
{J, Jg} € E(G) and since j < isy1 < js41 < Jg, We get {is+1, jg} € E(G) or,
equivalently, {x;,,, y;,} € E(H), impossible. |

Proof (of Theorem 7.28(b)) We use the fact, shown by Woodroofe [218, Theo-
rem 14], that reg(/ (I")) = indmatch(I") 4 1 for any weakly chordal graph I". Thus,
together with part (a) of Theorem 7.28, Lemma 7.31 and Proposition 7.32 we get

£+ 1 <reg(Jg) <reg(in.(Jg)) =reg({(H)) = indmatch(H) + 1 =¢+ 1.

where H = in.(G). This concludes the proof. |

As a consequence of Theorem 7.28 we obtain the following upper bound for the
regularity of Jg when G is a closed graph.

Corollary 7.33 Let G be a closed graph, and let m be the number of maximal
cliques of G. Then reg(Jg) < m + 1.

Proof Two different edges of an induced path of G cannot belong to the same clique.
It follows that £ < m, where £ is the length of the longest induced path of G. Thus
Theorem 7.28(b) yields the desired conclusion. |

Example 7.34 In general the inequality given in Corollary 7.33 may be strict. For
example let G be the graph whose cliques are given by the intervals [1, 3], [2, 4],
[3, 5] and [4, 6]. Then m = 4. A longest induced path of G is 1, 2, 4, 5. Its length is
L=3.

Corollary 7.35 Let G be a closed graph on [n]. Then reg(Jg) < n, and equality
holds if and only if G is a path graph.

Proof As before we denote by £ the length of the longest induced subgraph of G. By
Theorem 7.28, reg(Jg) = £+ 1, and obviously £ + 1 < n. If G is a path graph, then
£+1 = n. On the other hand, if reg(Jg) = n and if, as before, m denotes the number
of maximal cliques of G, then Corollary 7.33 implies thatn = reg(Jg) < m+1 < n,
so that m 4+ 1 = n. This is only possible if G is a path graph. O

7.3.3 An Upper Bound for the Regularity

Surprisingly, Corollary 7.35 holds true without the assumption that G is closed.
Indeed, one has

Theorem 7.36 Let G be a graph on [n]. Then

(a) reg(in<(Jg)) < n. In particular, reg(Jg) < n.
(b) reg(Jg) = n ifand only if G is a path.

The proof of the theorem requires some preparations.
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We consider the Zz”-grading of S = K[x1,...,Xn, Y1,..., yn] defined by
deg x; = e; and deg y; = e;4,. Binomial edge ideals are of course not Zz”-graded,
but monomial ideals in S are Z>"-graded. To simplify the notation, we often identify
the multidegree (a, b) = (a1, ..., ay, b1, ..., by) € Z*" with the monomial

b a b b,
Xy’ =xt gyt
For a Z*"-graded S-module M, we write

ﬂi,xayb (M) = ﬂi,(ﬂ,b) (M)a

and we set

2n
Pu® =Y > BranM)xy

k=0 (a,b)eZ?"
for the Z*"-graded Poincaré series of M.
In what follows we shall need to follow general technical result.

Lemma 7.37 Letuy,...,ugz be monomialsin S and I = (uy, ..., ug). Then

Psi) <1+ > Psjuuoyu; (Ot

where the inequality is understood to be coefficientwise.

Proof The assertion follows from the short exact sequences

00— S/((ul,...,uj_l):uj) N S/, ...,uj—1) = S/@i,...,uj) =0

for j =2,3,..., g, by applying mapping cones. O

We callapathw : s = ig, i1, ..., I, =t of G weakly admissible (w-admissible,
for short), if s < ¢ and, fork = 1,2, ...,r — 1, one has either i; < s ori; > t. The
vertices s and ¢ are called the ends of m and the vertices i1, ..., i,_1 are called the
inner vertices of .

For an w-admissible path  : s = iy, i1, ..., i, = ¢, we define the monomial

Up = (l—[ YUk> (l_[ ka> XsYt-
Vi <S§ Vi >t

Let Z(G) be the set of all w-admissible paths of G, and let < be the
lexicographic order induced by x; > --- > x, > y; > --- > y,. As a consequence
of Theorem 7.11 we have
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Lemma 7.38 in_(Jg) = (v; : m € Z(G)).

The set of generators of in.(Jg) given here may be not minimal because for w-
admissible paths the binomials u;; f;; need not to form a reduced Grobner basis.
The following result is crucial for the proof of part (a) of Theorem 7.36.

Lemma 7.39 Letw : s =ig,...,i =t be a w-admissible path and let 1 < k <
r — 1. Then following holds:

(@) If ix < s, then there is an £ > k such that the path T’ : iy, ixy1,...,10¢ IS a
w-admissible path of G and vy divides x;, vy.

(b) If iy > t, then there is an £ < k such that ©' : ig,i¢11, ..., i is a w-admissible
path of G and vy divides yy, vy.

Proof

(a) Let £ > k be the smallest integer satisfying iy < iy < t. Then the path 7’ :
ik, ik+1, - - - , i¢ satisfies the desired condition.
(b) is proved similarly. O

We call a path 7/, satisfying for 7 condition (a) or (b) in Lemma 7.39, a wedge
of r at iy.
Let g = | Z(G)|, we now fix an ordering

7T1,7'[2,...,7'[g

of the admissible paths of G, such that if the length of 7; is smaller than that of 7
then i < j. To simplify the notation, we write

Vg = Upy

fork =1,2,...,¢. Thenin.(Jg) = (v1, ..., vg). By the choice of the ordering,
if 7r; is a wedge of m; then i < j. This fact immediately implies the following
property.

Lemma 7.40 Let 1 < j < g and let s and t be the ends of w; with s < t. For
any inner vertex k of m;, one has x; € (v1,...,vj-1) : vj ifk < sand y; €
(1, vj—1) tvjifk >t

For a monomial w € S, let
mult(w) = {k € [n]: xryx divides w}.
Note that, for a squarefree monomial w € S, one has degw < n + | mult(w)]|.

The following proposition together with Theorem 2.19 yields the proof of
Theorem 7.36(a).
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Proposition 7.41 For any monomial w € S and an integer p > 0, one has
Bpw (S§/inc(Jg)) =0 if |mult(w)| = p.

In particular, reg(in- (Jg)) < n.

Proof The second statement follows from the first statement together with the fact
that the multigraded Betti numbers of a squarefree monomial ideal are concentrated
in squarefree degrees.

In order to prove the first statement we first introduce the following definition.
Set M = {v1, v2,...,v,}. We say that a subset F' = {v;;, vj,, ..., v;} C M with
i1 < --+ < iy is a Lyubeznik subset of M (of size k) if, for j = 1,2, ..., k, any
monomial vy with £ < i; does not divide lcm(v,-j, Vijprs oo Vi)

The theorem will be a consequence of the following two claims.

Claim I Let F = {v;, ..., v;} be a Lyubeznik subset of M. Then we have:
(i) mult(Iem(F)) contains no inner vertices of 7;, .
(ii) If mult(Ilem(F)) contains no inner vertices of r;; for j =2, 3, ..., k, then
| mult(lem(F))| < k — 1.
Claim 2 Let F = {v;,, ..., v;} be a Lyubeznik subset of M and w a monomial of
S. Let p > 0 be an integer. Suppose that
@) Bp,w(S/((1,...,vi;—1) 1 vj; -+ vy)) # 0, and that

(i1) mult(w - lem(F)) contains no inner vertices of ;s foré = 2,3, ... k.
Then there is a Lyubeznik subset F = {vj,...,vj,} of M and a monomial w such
that
@) Bp—1,w(S/ (1, ..., vjj—1) 1 vj, - vj,)) # 0,
(ii’) mult(w - lem(F)) contains no inner vertices of 7, for§ =2,3,...,¢, and

(") | mult(@ - lem(F))| — |F| = | mult(w - lem(F))| — | F| — 1.

We first show that these claims yield the desired result. Let u € S be a monomial
such that 8, ,(S/in.(Jg)) # 0 with p > 0. We show that there is a Lyubeznik
subset F such that

| mult()| = | mult(lem(F))| — | F| + p, (7.1)

and that F satisfies the assumption of Claim 1(ii).

Note that this proves the desired statement by Claim 1(ii).

Recall in.(Jg) = (v1,..., V). By Lemma 7.37, there is a Lyubeznik subset
{vj} of size 1 such that Bp—1u/; (S/((v1,...,vj—1) : vj)) # 0.1f p = 1, then
u = vj, and the set {v;} has the desired property (7.1). Suppose p > 1. Then the
pair of the Lyubeznik set {v;} and a monomial u/v; satisfies the assumption (i)
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and (ii) of Claim 2. Thus, by applying Claim 2 repeatedly, one obtains a Lyubeznik
subset F = {v;,, ..., v; } and a monomial w such that

IBO,w(S/((UI’ ] vilfl) SV Uik)) 7é 07 and
| mult(w - lem(F))| — |F| = | mult(u)| — p.

The first condition says that w = x0 y“, where 0 = (0,...,0), and the second
condition proves that F satisfies the (7.1).

It remains to prove Claims 1 and 2.

Proof of Claim 1: (i) Suppose to the contrary that there is an inner vertex k of
7;, which belongs to mult(lcm(F’)). Let ; be a wedge of m;, at k. Then j < ij

and v; divides lem(v;,, ..., v;) by Lemma 7.39. This contradicts the definition of
Lyubeznik sets.
(ii) Let s1, 11, 52, 12, . . ., Sk, t be the ends of 7;, ..., m;,, where s; < ¢; for all

Jj. By (i) and the assumption, mult(lcm(F’)) contains no inner vertices of m; f for all
Jj. Hence

|mult(lcm(F))| = |mu1t(xs‘] ytl.X'SQytz o '-xskytk)l < k— 1’

where the last inequality follows from the fact that s; < 1, ..., sx < .
Proof of Claim 2: We consider two cases.

Case 1:  Suppose that mult(w - Iem(F)) contains an inner vertex k of ;. We
may suppose that x; divides v;, (the case that y divides v;, is similar). Since by
Claim 1(i), yx does not divide lem(F'), it follows that y; divides w. Then, as y; €
(1, ..., viy=1) : v; - - - Vi, Lemma 7.40, implies that 8, , (S/((v1, ..., v;—1) :
Vjy =+ v,-k)) 75 0 if and Ollly if ,Bp—l,w/yk(s/((vh ey Uil—l) N T v,'k)) 75 0.
Then the pair of the set F = F and the monomial w = w/y satisfies (i’), (ii’),
and (iii’), as desired.

Case 2:  Suppose that mult(w - lcm(F)) contains no inner vertices of 7r;,. For j =
1,2,...,i1 — 1, let

_ v;
U,' = .
ged(vj, vy -+ vyy)
Then
@1, - Vi —1) = (U1, -0 o, Vi —1) TV e Vi
By Lemma 7.37 and (i), there is an 1 < iy < iy such that v;, & (vy, ..., Vjj—1)
and

Bp—1,w/w;, (S/(@1, ..., Vig—1) 1 Djy)) #O. (7.2)
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Let w = w/v;, and F = {viy, vi; ..., v;, ). Since, for £ < ip, V¢ divides v;, if and
only if v divides lem(v;,, v;;, ..., Vi), it follows that F is a Lyubeznik subset.
Also, since

V1,03 Vig—1) 1 Vig = (U1, ..o, Vig—1) : VigVi; =+ Vigs

(7.2) and the fact w - lem(F) = @ - lem(F) say that the pair F and # satisfies
@i’), (i1”), and (iii’), as desired. a

We now turn to the proof of part (b) of Theorem 7.36. For that purpose we
introduce some terminology and notation regarding graphs. Let G be a graph on
[#] and v a vertex of G. The set Ng(v) = {w: {v,w} € E(G)} is called the
neighborhood of v. The degree of v, denoted deg v, is the cardinality of N (v).

Let {eq, ..., e;} be a set of edges of G. By G \ {e, ..., e;}, we mean the graph
on the same vertex set as G in which the edges eq, ..., ¢; are omitted. Here, for an
edge e of G, we simply write G \ e, instead of G \ {e}.

Let v, w be two distinct vertices of G, and assume that e = {v, w} is not an edge
of G. Then we denote by G U e the graph on the same vertex set as G and with edge
set E(GUe) = E(G)U{e}. Moreover, we let G, be the graph on [r] with edge set

E(G.) = E(G)U E(G1)UE(G2),

where G is the complete graph on Ng (v) and G, is the complete graph on Ng (w).

For an edge e = {i, j} of G we denote the binomial f;; = x;y; — x;y; also be
fe- Inductive arguments will be used to prove Theorem 7.36(b). This requires the
following technical results. The first of these results, Proposition 7.42, follows by
standard arguments by considering the exact sequence

0 —> S/ : £)(=2) 25 S/ Jine —> §/dy — 0.

Proposition 7.42 Let H be a graph and e be an edge of H. Then we have

(a) reg(Jg) < max{reg(Ju\e), reg(Ju\e : fe) +1};
(b) reg(Ju\e) < max{reg(Jy),reg(Ju\e : fe) +2};
(©) reg(Ju\e : feo) +2 < max{reg(Jm\c), reg(Jp) + 1}.

A reference for the proof of the next result is given in the notes at the end of this
chapter.

Theorem 7.43 Let G be a graph and e = {i, j} be an edge of G. Then

Jo\e : fe = JG\e), + 1G.e

where Ig o = (8z : ™ 1i,11,...,15, J is a path betweeni, jin Gand0 <t <)
with gz0 = Xi\ -+~ Xj, and gz 1 = Yiy -+ Vi Xi,yy -+ Xig for 1 <t <.

Another tool for the proof of Theorem 7.36(b) is given by
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Lemma 7.44 Let G be a graph on [n], v a simplicial vertex of G with degg; (v) > 2,
and e an edge incident with v. Then reg(Jg\e : fo) <n — 2.

Proof Let vy, ..., v; be all the neighbors of the simplicial vertex v, and ey, ..., e
be the edges joining v to vy, ..., v, respectively, where + > 2. Without loss of
generality, assume that e = ¢;. Note that foreachi = 1,...,t — 1, v, v;, v is a
path between v and v; in G, so that foralli = 1,...,¢f — 1, x; and y; are in the
minimal monomial set of generators of the ideal /¢ ., as defined in Theorem 7.43.
Also, all other paths between v and v; in G \ e contain v; for somei =1,...,¢— 1.
Thus, all the monomials corresponding to these paths are divisible by either x; or y;
forsomei = 1,...,t — 1. Hence, we have Ig, = (x;,y : 1 <i <t —1).So
that Jg\e @ fe = JG\e), + (xi» yi + 1 < i <t — 1). The binomial generators of
J(G\e), corresponding to the edges containing vertices vy, ..., v;—], are contained
in Ig .. Let H = (G \ e),. Then, we have Jg\. : fo = JH[n]\(U,vl,.“,U,_” + (xi, i :
1 <i <t~ 1),since v is an isolated vertex of Hu\(v;,...,v,_;}- Thus, reg(Jg\e :
fe) = 12Tty oy oy ) BUL 1€2(TH 00y 0y ,)) < 1 — 2, by Theorem 7.36(a),
since t > 2. Therefore, reg(Jg\¢ : fe) < n — 2, as desired. O

For any graph G we introduce the numerical invariant g = min{ag(v) : v €
V(G)}, where a(v) is defined to be (*%¢"”") — |E(Gy())|. Note that ag = 0 is
equivalent to saying that G has a simplicial vertex. For example, let G be the graph
which is shown in Figure 7.4. There we have ag (1) = ag(5) = 0, since the vertices
1 and 5 are both simplicial vertices. On the other hand, a¢G(3) = ag(4) = 1, and
oG (2) = 2. Hence, ag = 0.

Proof (of Theorem 7.36(b)) By Corollary 7.35, reg(Jg) = n, if G is a path. Thus
we may now assume G is not a path and have to prove thatreg J¢ <n — 1.

We first prove this when G contains a simplicial vertex, or equivalently when
ac = 0. For that purpose we use induction on the number of vertices of G. If n = 2,
then G consists of just two isolated vertices, and hence clearly J; = (0), and we
are done. Now let n > 1, and assume that for any graph H over m vertices with
m < n, which is not a path, and has a simplicial vertex, we have reg(Jg) <m — 1.
We distinguish two cases: either G has a vertex of degree 1 or G has no such vertex.
Then, in the first case, by using our induction hypothesis, we show that the desired
bound holds. Next, in the second case, roughly speaking, by removing certain edges,
we reduce our problem to a graph with a vertex of degree 1, and hence we then
conclude the proof of Theorem 7.36(b) in the case that G has a simplicial vertex by
using the first case.

Fig. 7.4 A graph with 3

=0
e 1 2i>5

4
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Case(i): Suppose that G has a simplicial vertex v with deg(v) = 1. Then v has
only one neighbor, say w. Let e = {v, w} be the edge joining v and w. We have
reg(Jg\e) = reg(J(G\e)[n]\u), since v is an isolated vertex of G \ e. Thus, by
Theorem 7.36(a), reg(Jg\e) < n — 1. On the other hand, we have reg(Jg\¢ :
fe) = reg(JG\e),)> by Theorem 7.43. Note that v is also an isolated vertex of
(G \ e),, so that we can disregard it in computing the regularity, and hence we
have reg(Jg\e : fe) = reg(J((G\e)e)[nJ\v). Thus, reg(Jg\e : fe) < n — 2, by the
induction hypothesis, since ((G \ €),),}\, is @ graph on n — 1 vertices and since
it has w as a simplicial vertex, and since ((G \ e)e)[n]\v, as well as G \ e, is not
a path. Hence, reg(Jg\e : fe) +1 < n — 1. Thus, by Lemma 7.42(a), we get
reg(Jg) <n—1.

Case(ii):  Suppose that all the simplicial vertices of G have degree greater than
one. Let v be a simplicial vertex of G and vy, ..., v; be all the neighbors of v,
and ey, ..., ¢; be the edges joining v to vy, . .., v;, respectively, where t > 2. By
Lemma 7.42(a) and Lemma 7.44, we have reg(Jg) < max{reg(Jg\¢,),n — 1}. If
t > 2, then by applying the same argument to the graph G \ e, we get reg(Jg) <
max{reg(JG\fe;,e;}), n — 1}. Since degg o, oy (v) = 2forl=1,...,1 =2, we
can repeat this process to obtain reg(Jg) < max{reg(Jg\(e,.....e,_;})> " — 1}. Note
that G \ {ey, ..., e;—1} is a graph on n vertices in which deg(v) = 1. Thus, by
case (i), we have reg(JG\fey,....e,_;})) < n — 1. Thus, reg(Jg) <n — 1.

In order to complete the proof of the theorem we now have to deal with the case
that G has no simplicial vertex. Assume that there exists a graph G on [n] which
does not have any simplicial vertex (in particular, G is not a path) and for which
reg(Jg) > n. We may assume that G has the least number of vertices, n, among the
graphs for which the desired inequality does not hold. Moreover, we assume that
o is the minimum among the graphs on n vertices with this property. Since G does
not contain any simplicial vertex, we have «g > 1, and hence there exists a vertex
v of G which has two neighbors, say v and vy, which are not adjacent in G, and
ag = ag(v). Let e = {v1, v2}. By Lemma 7.42(b),

reg(Jg) = max{reg(Joue), reg(Jg : fe) +2}. (7.3)

Moreover, agu.(v) = ag(v) — 1, and hence ague < ag — 1. Since G U ¢ has n
vertices, we have reg(Jgu.) < n — 1, by our choice of G. Note that G U ¢, as well
as G, is not a path.

Now, we show that reg(Jg : f.) +2 < n — 1. By Theorem 7.43, we have
Jo : fe = Jg, + Igue. Since vy, v, vy is a path between vy and v, in G, we
have Igue = (xy, Yv) + I(G\v)ue> and hence Jg : fe = Jg, + Igue = JG\v), +
I(G\v)ue + (X, Yv). Thus, reg(Jg : fe) = reg(J(G\v), +1(G\v)ue)- By Theorem 7.43,
reg(Jo\v : fe) = reg(JG\v), + I(G\v)ue), so thatreg(Jg : fe) =Teg(Jo\v : fe). On
the other hand, we have reg(Jg\v : fe) +2 < max{reg(Jg\v), reg(J(G\v)ue) +1}, by
Lemma 7.42(c), and reg(Jg\y) < n — 1, by Theorem 7.36(a). Therefore, it remains
to be shown that reg(J(G\vyue) < n — 2.
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We first claim that (G \ v) U e is not a path. To prove the claim, suppose on the
contrary that (G \ v) Ue is a path over n — 1 vertices. Then, G \ v is the disjoint union
of two path graphs 7; and 7y on two different sets of vertices, where t +s =n — 1.
Note that e joins a vertex of minimum degree of 7; and a vertex of minimum degree
of 7y, in (G \ v) Ue. Moreover, v is adjacent to these two vertices in G. So, if s < 2
or t < 2, then G has a simplicial vertex which is a contradiction, by our choice of
G. Suppose now that t > 3 and s > 3. Then v is adjacent to both of the degree 1
vertices of m; and 75 in G, since otherwise G has a vertex of degree 1, and hence a
simplicial vertex which contradicts the choice of G. Now suppose that {u#, w} is an
edge of 7, with deg, w = 1. If u is adjacent to v, then w is a simplicial vertex of
G which is a contradiction, because of our choice of G. So, suppose that u is not
adjacent to v. Then u has just two neighbors in G which are not adjacent to each
other, and hence o (1) = 1. On the other hand, ag(v) > 6, because v is adjacent
to at least four vertices, namely the vertices of degree 1 of 7; and g, and none of
these vertices are adjacent to each other in G. So, we get a contradiction, since by
the definition of «g, we have ag = oG (v) < ag(u). Therefore, (G \ v) Ueisnota
path and the claim follows.

Thus, by the choice of G, we have reg(J(G\v)ue) < n — 2, since (G \ v) U e has
n — 1 vertices. This yields the desired conclusion. O

Problems

7.16 In Theorem 7.28 it was shown that if G is closed and connected, then
reg(Jg) = € + 1, where € be the length of the longest induced path of G. Show
by an example that the converse is not true.

7.17 Given integers 2 < m < n, show there exists a graph on [n] such that
reg(Jg) = m.
7.18 Let C, be a cycle of length n. Compute reg(Jg).

7.19 Characterize those trees G on the vertex set [n] for which reg(Jg) =n — 1.

7.20 Let G be closed graph. Show that B; 2;(S/Jg) = Bi2i(S/in<(Jg)), where
< denotes the lexicographic order on S = K|[x1,..., Xy, Y1, ..., ¥n] induced by
X] > o> Xy >y >0 > Yy

7.4 Koszul Binomial Edge Ideals

In this section we study the Koszul property of the K -algebras defined by binomial
edge ideals. Let G be a finite simple graph on the vertex set [r], K a field and
Je € S = K[x1,...,%Xn,,Y1,--.,Yn] the binomial edge ideal of G. We call G
Koszul, if for some base field K, the standard graded K -algebra S/Jg is Koszul.
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7.4.1 Koszul Graphs

For the study of Koszul graphs it is enough to consider connected graphs. Indeed,
one has

Proposition 7.45 Let G be a graph with connected components G1, ..., G,. Then
G is Koszul if and only if G; is Koszul for 1 <i <r.

Proof The proof follows from Problem 2.29 because S/Jg = Q):_, Si/Jc,, where
Si=K[{xj,yj:jeV(Gpllforl <i <r. O

The following result shows that Koszulness is inherited by induced subgraphs.

Proposition 7.46 Let G be a Koszul graph, and let H be an induced subgraph of
G. Then H is Koszul.

Proof We may assume that V(H) = [k]. Let S = K|[xy,..., X4, y1,..., yu] and
T =KI[x1,..., Xk, Y1,---,Yk]. Then T /Jg is an algebra retract of S/Js. Indeed,

let L = (Xk+1,---5Xn, Yk+1s - --» Yn). Then the composition T/Jg — S/Jg —
S/(Jg, L)=T/Jg of the natural K -algebra homomorphisms is an isomorphism. It
follows therefore from Theorem 2.31 that H is again Koszul. O

As an application of Proposition 7.46 we have
Theorem 7.47 Let G be a Koszul graph. Then G is chordal and claw free.

Proof Suppose that G is not claw free. Then there exists an induced subgraph H
of G which is isomorphic to a claw. We may assume that V(H) = {1, 2, 3, 4}, and
let R = K[x1,...,x4, Y1, ..., y4]. A computation with Singular [49] shows that
/3§ gJH (K) # 0. Thus H is not Koszul. By Proposition 7.46, this contradicts our
assumption that G is Koszul.

Suppose that G is not chordal. Then there exists a cycle C of length > 4 which
has no chord. Then C is an induced subgraph and hence should be Koszul. We may
assume that V(C) = {1,2,...,m} with edges {i,i + 1} fori = 1,...,m — 1 and
edge {1,m}and set T = K[x1,...,Xm, V1, ..., Ym]. We claim that ﬁgm(T/Jc) #*
0. For m > 4, this will imply that C is not Koszul, see Theorem 2.32(b). That a
4-cycle is not Koszul can again be directly checked with Singular [49]. Again, by
Proposition 7.46, this contradicts the assumption that G is Koszul.

In order to prove the claim, we let FF = @;‘n:] Te; and consider the free
presentation

€: F—Jc—0, e+ fijprfori=1,....,m

For simplicity, here and in the following, we read m + 1 as 1.

Obviously, g = >/ (172 x;)/(xixi41)e; € Kere. We will show that g is a
minimal generator of Kere. Indeed, let g’ = >"/* | gie; € Kere be an arbitrary
relation, and suppose that some g; = 0. Since the f; ;11 for i # j form a regular
sequence, it then follows that all the other g; belong to Jc. However, since the
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coefficients of g do not belong to Jc, we conclude that g cannot be written as a
linear combination of relations for which one of its coefficients is zero.

Now assume that all g; # 0. Let ¢; denote the ith canonical unit vector of Z".
Since Jc is a Z"-graded ideal with degy. x; = degz» yi = €;, we may assume that
g =Y ,_; giei is a homogeneous relation where degy. e; = deg fii+1 = € +€i41
and g; is homogeneous satisfying deg;. ¢’ = degyn g; + € + €41 for all i. This
is only possible if degy, ' > Y 7", €;, coefficientwise. In particular it follows that
deg g’ > m, where deg g’ denotes the total degree of g’. Thus g cannot be a linear
combination of relations of lower (total) degree and hence is a minimal generator of
Kere. Since deg g = m, we conclude that ﬂ{m (T/Jc) #0. O

Corollary 7.48 Let G be a forest (i.e. a graph without cycles). Then G is Koszul if
and only if each component of G is a path graph.

Proof By Proposition 7.45 we may assume that G is connected and have to show
that G is Koszul if and only if G is a path graph. If G is a path graph, then Jg
is a closed graph, and hence Koszul. On the other hand, if G is not a path, then it
contains an induced claw, and hence is not Koszul.

Let G be a graph. A vertex v of G is called a simplicial vertex of G, if v belongs
to exactly one maximal clique of G.

Proposition 7.49 Let G| be a graph with simplicial vertex v, G, a graph with
simplicial vertex v', and assume that V(G )NV (G3) = @. Then the linear forms
Uy = xy —xy and Ly = y, — y, form a regular sequence on S’ | Jg' where G' is the
graph whose connected components are G| and G, and where S’ is the polynomial
ring in which Jg is defined.

Proof We first show that [, is regular on S’/ J¢. Since

Jor 1 1y = ﬂ (Pr :1y),
Te6(G)

it is sufficient to verify that
Pr:ly=Pr forall T e%(G).

We actually show that [, ¢ Pr. Then this implies that Pr : [, = Pr, because Pr is
a prime ideal. We have

PTZ(U{xi,yi},Jd/l,...,J~ )

G’ (1)
ieT
By Proposition 7.22 it follows that

Iy ¢ (e, vid),

ieT
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since v and v’ are simplicial vertices. Since 1y is a linear form, it cannot be obtained
by a linear combination of the quadratic generators of Pr, hence l, ¢ Pr, as desired.

Next we claim that (Jg',1y) : Iy = (Jgr,ly). We may assume that V(G;) =
{1,2,...,n},V(Gy) ={n+1,...,m+n},v=nand v = n + 1. For the proof
of the claim we describe the Grobner basis of Jg' + (Iy). We fix the lexicographic
order induced by

X1 >X2> > Xpym > V1> V2 > Yngme (7.4)
Given an admissible path
Tl =100,01,.--,0p =]

from i to j withi < j we associate the monomial

= ([ ) (J ] vi)-

ix>j ig<i
Then, as shown in Theorem 7.11,
9 = {uz fij : 7 is an admissible path from i to j}. (7.5)

is a Grobner bases of Jgr.
We claim that

9 = {l,} U{uy f;j : m is an admissible path from i to j # n}U
U {uzr (Xiyn+1 — X yi) :  is an admissible path from i to j = n}. (7.6)
is a Grobner basis of Jgr + (Iy).

Let % = 9%’ U {l,}. By (7.5) and Buchberger’s criterion all the S-pairs of
polynomials in ¢’ reduce to 0. Hence we only have to consider the S-pairs

S(ly’ ”ﬂfij)

for all uy fi; € 4’ 1If y, does not divide in(uy fij) = uzx;yj, the S-pair reduces
to 0. If y, divides uzx;y;, then 7 is an admissible path of G1, and since n is the
maximal in the labeling of V(G1), by the definition of an admissible path, j = n.
Therefore,

S(lys Uz fin) = —Ug (XiYp+1 — XnYi)
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with in(—u; (Xj Yn+1 — XnYi)) = —UzXiYp+1. We want to show that

% = {l,} U {uy fij : m is an admissible path from i to j}jU
(7.7
U{ur (Xi Yn41 — Xnyi) © 7 is an admissible path from i to j = n}.

is a Grobner basis of Jg' + (Iy). Since S(ly, uy f;;) reduce to 0 by the binomials
described in the third set of (7.7) and since S(uy fij, uo fiz) reduce to O by the
binomials described in the second set of (7.7), it remains to investigate the S-pairs
of the form

(1) Sun (Xiyn1 — XnYi), Uo (Xjyn+1 — Xny;)) and
(2) Sz (XiYn+1 — XuYi), Uo fr1)-
Case (1): Ifi = j, then the S-polynomial itself is 0. If i # j, then

St (Xi Y1 — Xn Vi) o (XjYnt1 — XnY;)) = Sz fin, o fin),

and the assertion follows since ¢ D ¥.

Case (2): If{k,l}N{i,n+1} = @ori = [, then in(x; y,+1 —x, y;) and in( fi;) form
aregular sequence. Hence the corresponding S-pair reduces to 0. If n+1 € {k, I},
then o is an admissible path in G; and in( fx;) = x,41y;. Therefore in this case
the initial monomials form a regular sequence, too.

It remains to consider the case i = k. We observe that there exists a monomial w
such that

S(ug (X Ynr1 — XnYi)s Uo fi1) = WX Ynt1 — Xn Vi), (7.8)

and

S(uz fin, Us fit) = Wi (7.9)

Since (7.9) reduces to 0 in ¢, there exists f € ¢ such that in(f) divides wx; yj,.
If y, divides in(f), then f = u; fj,, and this implies that [’ = u;(xjy,41 —
X,yj) € 9. Therefore the remainder of wf;, with respect to f is equal to the
remainder of w(x;y, 11 — x,y;) with respect to f’ and reduce to 0.
If y, does not divide in( f), then in(f) divides wx; and hence divides the initial
term of (7.8). That is, the remainder of wfj, with respect to f is

W fim (7.10)

for some monomial w’, and at the same time the remainder of w(x;y,+1 — Xn Y1)
with respect of f is

W (X Ynt1 — XnY0). (7.11)
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Proceeding as before, since w’fy, is not zero and reduces to 0, we can apply
the same reduction step to w’ fy,, and w’(xy y,41 — x,yy) following the arguments
applied to the binomials in the second terms of Equations (7.8) and (7.9). Thanks to
Buchberger’s algorithm, since the expression (7.10) reduces to 0 in a finite number
of steps, also the expression (7.11) reduces to 0 by the same number of steps.

Hence ¢ is a Grobner basis and we can remove the reducible polynomials u f;;
with j = n since their initial terms are divisible by in(/y) = y,. The claim follows.

Therefore

in(Jgr + (1y)) = (Vs U Xiyj, U Xi ypt1) With i < j #n, i’ <n. (7.12)

Suppose that f € (Jgr +1y) : Iy, thatis, f(x, — xp41) € (Jgr + (Iy)). Then
in(f (xp — xp41)) = in(f)x, € in(Jg + (Iy)). We observe that x, does not divide
any monomial in the minimal set of generators of in(Jg + (Iy)). In fact, i # n and
i’ # n by (7.12). Let  be an admissible path such that there exists k with 1 <k < r
and iy = n. Since n is a simplicial vertex in a clique F € A(G’), 7 contains at least
2 vertices u, w € F withn ¢ {u, w}. But since {u, w} € E(G), 7 is not admissible.
Hence in(f) € in(Jg' + (Iy)). Thus we have shown that in(Jg' + (1)) : Iy) C
in(Jg' + (Iy)). Since the other inclusion is trivially true, we get in(Jg' + (Iy)) =
in(Jg' + (Iy) : Ix), and since Jg' + (1) C Jg + (Iy) : Ix we finally deduce from
this that Jg' + (Iy) = Jg' + (Iy) : Iy, as desired. O

Let G1 and G, be two graphs with V(G1) N V(G2) = {v}, and v is a simplicial
vertex of G and G,. Let G = G1 UG, with V(G) = V(G1)UV(Gy) and E(G) =
E(G1) U E(G2). We say that G is obtained by gluing G| and G, along the vertex
v.

The following result allows us to construct families of Koszul graphs.

Theorem 7.50 Let G be a graph obtained by gluing the graphs G and G, along
a vertex. Then G is Koszul if and only if G| and G are Koszul.

Proof Let V(G) = [n] and assume that G| and G» are glued along the vertex
v € [n]. Let v’ be a vertex which does not belong to V(G) and let G, be the graph
with V(G)) = (V(G2)\{v})U{v'} whose edge setis E(G)) = E(G2\{v})U{{i, v’} :
{i,v} € E(Gy)}). Weset S = K[x1,...,%u, V1,--.,¥n] and S’ = S[x,, y,/]. Let
£y = xy — xy and £y, = y, — y,. By Proposition 7.49, £, £ is a regular sequence
on §'/Jg, where G’ is the graph whose connected components are G1 and G).
Moreover, we obviously have

S//(JG’v ZXa gy) = S/JG

Hence, Corollary 2.22 implies that G is Koszul if and only if G’ is Koszul. Next,
by Proposition 7.45, we see that G’ is Koszul if and only its connected components,
namely G and G, are Koszul. Finally, we observe that G/, is Koszul if and only if
G is so. |
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The following corollary presents a class of chordal and claw-free graphs which
are Koszul.

Corollary 7.51 Let G be a chordal and claw-free graph with the property that
A(G) admits a leaf order Fy, ..., F, such that for all i > 1, the facet F; intersects
any of its branches in only one vertex. Then G is Koszul.

Proof We proceed by induction on r. If r = 1, there is nothing to prove since
any clique is Koszul. Let r > 1 and assume that the graph G’ with A(G') =
(F1, ..., Fr_1) is Koszul. We may assume that F,_; is a branch of F, and let
{v} = F. N F,_1. The desired statement follows by applying Theorem 7.50 for
G’ and the clique F}, once we show that v is a simplicial vertex of G'.

Let us assume that v is not free in G’ and choose a maximal clique F; with
J < r —2such that v € F;. We may find three vertices a, b,c € V(G) such
thata € F, \ (Fr—1 U F}), b € Fr_1 \ (F, U Fj),and ¢ € F; \ (F, U F,_1). If
{a, b} € E(G), then there exists a maximal clique F; with k& < r — 1 such that
a,b € F. This implies that a € Fy N F, C {v}, contradiction. Therefore, {a, b}
is not an edge of G. Similarly, one proves that {a, c} ¢ E(G). Let us now assume
that {b, c} € E(G). The clique on the vertices v, b, ¢ is contained in some maximal
clique Fj. We have k < r —2 since Fy # F,_1. Then it follows that | Fy N F,_1| > 2
which is a contradiction to our hypothesis on G. Consequently, we have proved that
{a, b}, {b, c}, {a,c} ¢ E(G). Hence, G contains a claw as an induced subgraph,
contradiction. Therefore, v is a simplicial vertex of G'. m]

The net displayed in Figure 7.3 satisfies the conditions of Corollary 7.51 but is
not closed, while the tent displayed in the same figure happens to be chordal but
not Koszul. That the tent is not Koszul can be seen as follows: we label the tent as
shown in Figure 7.5.

First observe that the graph G’ restricted to the vertex set [4] is Koszul by Corol-
lary 7.51, and that B = K[x1, ..., X4, y1, ..., y4]/Jg’ is an algebra retract of A =
K[x1,...,%x6, Y1, ..., Y6]/Jc with retraction map A — A/(xs, X6, ¥5, Y6)=B.
Thus if A would be Koszul, the ideal (xs, x¢, 5, y6) would have to have an A-
linear resolution, see Theorem 2.31. It can be verified with Singular [49] that this is
not the case.

Fig. 7.5 The tent is not
Koszul
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7.4.2 Koszul Flags and Koszul Filtrations for Closed Graphs

In this subsection it will be shown that S/Jg has a Koszul filtration for any closed
graph. We first characterize closed graphs by the property that the variables x; form
a Koszul flag of S/Jg for a suitable order of them. Here any chain of ideals (0) =
Ipc I C ... C I, of §/Jg generated by linear forms is called a Koszul flag of
S/Jg,if for all j, I;41/1; is cyclic and the annihilator of /;;/I; is generated by
linear forms.

Consider the ideal I which is generated by the binomial x;x3 — x>x3. Then [ :
x3 = (I, x1 —x2) = (x1 — x2). Thus, in general, one cannot expect that the ideals
(I, xj+1,...,%xn) : x; are generated by a subset of the variables modulo /, even
when [ is a binomial ideal. Therefore some additional assumptions on the Grobner
basis of I are required to have monomial colon ideals.

Theorem 7.52 Let I C R = K|x1,...,x,] be an ideal generated by quadratic
binomials, and let < be the reverse lexicographic order induced by x1 > xp > - -+ >
Xn. Let f1, ..., fm be the degree 2 binomials of the reduced Grobner basis of I with
respect to <. Let f; = u; —v; fori = 1,...,m, and assume that gcd(u;, v;) = 1
foralli. Then, for all i, we have:

(a) [(I’ xl+17 I ) xl’l) : xl]l = [(1n<(1)7 xl+15 I ) xn) . xl]l)
(b) Suppose I has a quadratic Grobner basis with respect to <. Then

U, Xigt, ooy X)) s =, X, oo X0, {xj 0 j <0, xjx; € inc(D)}),
and
(in<(1)s xi+17 cee xn) : xi:(in<(1)9 xi+la ) -xns {'xj: ]Sl, xjxiein<(1)})'
Proof
(a) Letl = ZZ:I apxi be alinear form. First suppose that €x; € (I, xj41, ..., Xy).
We may assume that g = 0 for k > i. Let x; = in.(¢). Then j < i
and x;x; € in.(/,xj41,...,%,) = (in<(I), Xj41, ..., x,). Therefore, there
exists fir with in.(fx) = xjx;. Thus, if fx = xjx; — x,x,, then s > 1.
However, since gcd(ug,vk) = 1, we see that s > i. This implies that
xjx; € (I, Xi41,...,xy) and, consequently, (£ — a;jx;)x; € (I, Xi11,...,Xpn).
Since x; € (in<(/), X;j41,...,%,) : X;, induction on in. (£) shows that £ €
(in<(1)a Xitly ey xn) C X
Conversely, suppose £ € (in.(1), xj4+1,...,Xn) : Xx;. Since (in< (1), Xj+1,
..., Xy) is a monomial ideal, we may assume that ¢ is a monomial and
t ¢ (in<(I),xiq1,...,%p), say, £ = x;. Then j < i and x;x; €
(inc(), Xi41,...,Xxp). As before, there exists fiy = xjx; — x,x; with
r < s and s > i. It follows that x;x; € (I, xi41,...,x,). and hence

Xj €U, Xig1, .0, Xn) & X
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(b) Suppose that 4 = {f1, ..., fiu} is the reduced Grobner basis of I with respect
to<.LetJ; = (I, Xj+1,...,Xn) : x; and

J = xiq1, .o xn, {xj: j <, xjx; € inc(D)}).

One has Ji’ C Ji. To see why this is true, suppose that x;x; € in.(/) with
j <i.Thenthereis fy = x;x; — xpx4 € 4 within_(f;) = x;x;. Since j < i,
it follows that either p > i or ¢ > i. Hence xpx4 € (I, Xj+1, ..., Xx,). Thus
xjx; € (I, Xi41,...,%,) and x; € J;, as required.

Now, let &7 denote the set of homogeneous polynomials f € S of degree > 1
which belong to J; with the property that none of the monomials appearing in f
belongs to J/. Suppose that o7 # . Among the polynomials belonging to <7, we
choose f € o such thatin_(f) < in.(g) forall g € o/. Letu = in_(f). Since
xif € (I, xiy1,...,xy), one has x;ju € (inc(I), xj41,...,x,). Since u ¢ J/, it
follows that x;u € in.(I). Thus there is fy = xpx; — x,x5 with ino(f) = xpx,
such that x,x, divides x;u. If, say, p = i, then x, divides u. Thus ¢ < i. Since
Xix4 € in. (1), one has x; € Jl./ . This contradicts our assumption that u ¢ Ji/ . Thus
p #i,q #iand x,x, divides u. Let w = (u/xpxy)x,xs and ' = f —a(u — w),
where a # 0 is the coefficient of u in f. Since u — w € I, one has f’ € J;. Since
u & J/,onehas w ¢ J/. Thus ' € o and in_(f’) < in_(f). This contradicts the
choice of f € «/. Hence o/ = { and J; = J/, as desired.

The proof of the corresponding statement for in_ (/) is obvious. O

Before continuing we introduce some notation. For k € [n], we let
N=(k)y={j:j <k {j.k} € E(G)yand N” (k) ={j : j > k, {k, j} € E(G)}.

For the following proofs it will be useful to note that, provided that they are
nonempty, each of these sets are intervals if the graph G is closed with respect to its
labeling. Indeed, let us take i € N <(k). In particular, we have {i, k} € E(G). Then,
as all the maximal cliques of G are intervals (see Theorem 7.7 ), it follows that for
any i < j < k, {j,k} € E(G), thus j € N<(k). A similar argument works for
N~ (k).

Theorem 7.53 Let G be a connected graph on the vertex set [n]. The following
conditions are equivalent:

(1) G is closed with respect to the given labeling;
(ii) the sequence xy, Xy—1,...,Xx1 has linear quotients modulo Jg, and hence
establishes a Kosul flag.

Proof (i) = (ii): Let G be closed with respect to the given labeling. It follows
that the generators of Jg form the reduced Grobner basis of Jg with respect to the
reverse lexicographic order induced by y; > --- > y, > x1 > --- > x,,. Leti <n.
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The generators of in. (Jg) which are divisible by x; are exactly x;y; where i < j
and {i, j} € E(G). Hence, by using Theorem 7.52 (b), we get

(-)EYL?')EVL*]? . 'ail‘+1) :)El' = ()Envfnfl, e 7)zi+1’ {y] .] S N>(l)}) (713)

Here f denotes the residue class for a polynomial f € S modulo Jg.

(il)) = (i): We may suppose that x,,, X,—1, ..., X1 has linear quotients and show
that G is closed with respect to the given labeling. In fact, assume that G is not
closed. Then there exist {i, j}, {i, k} € E(G) withi < j <kori > j > k and such
that {j, k} € E(G).

Let us first consider the case thati < j < k. Since

iVk = XiyjYk = XkYiYj,

‘<|

we see that yiyx € (Xp, ..., Xj41) @ Xj.

We claim that y; y; is a minimal generator of (X, ..., X;11) : X;, contradicting
the assumption that x,,, X,,_1, . . ., X1 has linear quotients. Indeed, suppose that y; yi
is not a minimal generator of (x,,, ..., Xjy1) : Xj, then there exist linear forms £;
and ¢, in S such that £,0, = Vi Vk and at least one of the forms £}, £» belongs to
Xnyovns Xjt1) 1 X

Now we observe that Jg is Z"-graded with degx; = deg y; = ¢; for all i, where
¢; is the ith canonical unit vector of Z". It follows that the £; are multi-homogeneous
as well with degﬁléz = € + €, say deg@l = ¢ and degﬁg = €. Thus El =
ax; + by; and €, = cxx + dyy with a, b, c,d € K. Let us first assume that l €
(Xn, ... Xj11) 1 x;. We get

axixj +bx;yi € (Jg, Xp, ..., Xj4+1)
which implies that
inc(ax;xj +bx;y;) € inc(Jg, Xp, ..., Xj41) = ((in< JG), Xp, ..., Xj41)-
Here < denotes the reverse lexicographic order induced by y; > --- > y, > x1 >

- > xp. It follows that x;x; € in.(Jg) or x;y; € in<(Jg), which is impossible
since the generators of degree 2 of in- (Ji) are of the form x; y, with {k, £} € E(G)
and k < £.

Let us now consider the case that £, € (X, ..., Xjy1) : xj. We get cxpxj +
dxjyr € (JG, Xn,...,xjy1). I d # 0, we obtain x;y; € (Jg, X, ..., xj4+1) and,
therefore, x;yr € (in<(Jg), X, ..., xj4+1) which implies that x;y; € in<(Ji),
a contradiction since {j, k} € E(G) by assumption. Therefore, we must have
0y = cx; for some ¢ € K \ {0}. The equation £, = 3,y implies that
cxp(ax; + by;) — yiyr € Jg. It follows that one of the monomials x;xx, Xk Vi, ¥i Vi
belongs to in< (Jg), contradiction.

Finally, we consider the case that i > j > k. Then x; fjx € Jg, and so
fik € (Xn,...,Xiy1) : X;. By similar arguments as above, we show that fjj is
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a minimal generator of (X, ..., X;4+1) : X;. Suppose that there exist linear forms
£y = axj + byj and £» = cxx + dyy such that g = fjr — £1£2 € Jg. Since no
monomial in the support of g belongs to in.(G) (with the monomial order as in
the previous paragraph), it follows that g & Ji, a contradiction. Hence, we see that
(Xn, ..., Xj41) : X; is not generated by linear forms. O
Lemma 7.54 LetO <k <n—1, N~(k) ={k+1,...,¢} forsomel > k+1, and
N<tk+1)={i,i+1,...,k} forsomei < k. Then:

@ (JGsXny ooy Xkt ls Ykt2s -5 Y0 = Vi1 = (JGo Xy ooy Xk 1y Xk - o5 Xi
Vk42, -5 Ye)s
(b) fork+2<s <t ysisregular on (JG, Xn, ..y Xis Yst1y > Ve)-

Proof
(a) Letr € N=(k + 1). Then

Xr Vit = (Xr Vi1 — Xk+1Yr) + Xet1Yr € (JGo Xy oo oy Xpt1).

This shows the inclusion D .

For the other inclusion, let f € S such that fyirr1 € (Jg, Xn, - -+ s Xkt1,
YVk42, - - -, yo). If H is the restriction of G to the set [k], then (Jg, Xn, . . ., Xk+1,
)’k+2~~~:yi) = (JH,xnw~-,xk+1,)7k+2,~~~,)’€,{XrYj r = k < jv {rvj} €

E(G)}). Let us observe that, if {r, j} € E(G) withr < k < j, then, as G is
closed, we have {k, j} € E(G), thus j € {k + 1, ..., £}. Therefore, we get

(JG5'xn7 "‘7xk+]5yk+25 -~~7)’€) = (JH,.X:n, "'7xk+17
VK425 -+ o5 Y05 Xi Ykt 1s - s Xk Vk+1)-

By inspecting the S—polynomials of the generators in the right side of the above
equality of ideals, it follows that

N (JGs Xns - ooy Xkt 1s Yht2s -+ V) =
(in<(JH)s Xny ooos X1y Y425 oo o5 YO Xi Y415 -+« xk)’k+1)-
Here < denotes the lexicographic order on S = K[x1,...,Xn, Y1,--., Vnl

induced by the natural order of the variables.
It follows that

e ()yrgr1 € Ana(JH)s Xy ooy Xk 1y Yht2s - - -5 YO XiVkt1s - - s Xk Vk41),
which implies thatin< (f) € (in<(Jg), Xn, -« s Xkop1s Xk« « «» Xiy Vk42s -5 V0)-
Hence, either in<(f) € (Xpn, ..., Xk+1s Xks - -« s Xiy k42, -+, Ye) OF in(f) €

in. (Jg). In both cases we may proceed by induction on in-(f). In the first
case, let a be the coefficient of in_(f) in f. Then g = f — ain.(f) has
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in.(g) <in.(f) and gyxy1 € (JG, Xn, - - - Xk41, Yk42, - - -» Ye). In the second
case, let h € Jy and ¢ € K \ {0} such that in.(h — cf) < in_(f). Thus, if
g = h — cf, it follows that

8Vk+1 € (JGv Xns ooos X1y Y425 -+ o yl)
as well.
Letk + 2 < s < £. Itis enough to show that y; is regular on the initial ideal of
(JG» Xny -y Xiy Vs+1, - - - » Ye). Let H be the restriction of G to the set [i]. Then
in<(JG?-xl’l5 "-7-xi7 yS+17 "'7yl) =

inc(Jy, Xp, ooy Xi, Yst1s - Yo {Xryj i <i < j,{r, j} € E(G)}) =
(in<(]H)7xn9---7xl's yS+11 ~-~ay@1 {-xryj or <l < ja {rvj} € E(G)})

The last equality from above may be easily checked by observing that the S—
polynomials S(f,¢, x,y;) reduce to O forany r < £ < i < j with {r, £} €
E(H).

We claim that y; does not divide any of the generators of

(in<(JH)7xn9""-xi5 )’s+1, ""ye’ {xr)’j r <l < j’ {rvj} € E(G)})

Obviously, ys does not divide any of the generators of in. (Jg ). Next, if {r, s} €
E(G)forsomer < i < k+1 < s,then, as G is closed, we get {r, k+1} € E(G),
contradiction to the fact that i = min N=(k 4 1). This shows that none of the
generators x,y; is divisible by y;. O

Theorem 7.55 Let G be a closed graph. Then R = S/Jg has a Koszul filtration.

Proof Let G be closed with respect to its labeling. We set f for f mod(Jg) €
R =S/Jg.Fork ¢ [n—1],let N> (k) = {k+1,...,¢}and N~(k+ 1) =

{ik,

i+ 1,..., k.

Let us consider the following families of ideals:

and

n—1
Fr =G oo F1 Far oo T s, T,
k=1

n—1

Ty =G oo Fagt oo - 500 G oo Bt Feg2s -0 Fe))s
k=1

n—1

Fy = @ Fi oo Fe) k2 <5 <
k=1
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Fig. 7.6 The net has a
Koszul filtration

We claim that the family .% = %) U .%, U .%3 U {(0)} is a Koszul filtration of R.
We have to check that, for every I € .7, there exists J € .% such that I/J is cyclic
andJ : [ €¢ &.

Let us consider I = (X, ..., X1, Yn, ..., Yk) € F1. Then, for J = (X,, ..., X1,
Vs evs Vk+l) € F1, we have J : I = J since yy is obviously regular on R/ J.

For I = (kp, ..., %) € Z1withl <k <n—1,wetake J = (X, ..., Xx+1) €
Z1. Then, by (7.13), we get J : I = (Xp,..., Xk+1, Vk+1s---»Y8) € F2. In
addition, for I = (x,), we have (0) : I = (0) since X, is regular on R.

Let us now choose I € %3, I = (X4, ..., Xk+1, Yk+1, - - -» Yg,) for some 1 <
k <n—1.Then, J = (X, ..., Xkt1, Yk+2, ---» Yg,) € F2 and, by Lemma 7.54
(a), wehave J : I = (Xy, ..., Xip, Ykt2, - - -» V) € F3.

Finally, if I € %3, I = (X, ..., Xiy, ¥s, ..., yg,) forsome k +2 < s < £, we
take J = (Xp, ..., Xip, Ys+1s ---» ¥g,) € -#3. By Lemma 7.54 (b), we get J : [ = J
since yg is regular on R/J. ]

The following example shows that the converse of Theorem 7.55 is not true. In

other words, there exist Koszul graphs G which are not closed such that R = S/Jg
has a Koszul filtration.

Example 7.56 Let G be the net labeled as in Figure 7.6.
As we have seen in Section 7.1, the graph G is not closed. On the other hand,

Klx1,..., %6, Y1, ..., Y6l/Jg possesses the following Koszul filtration:

0, (6, (6, X6),

(6, ¥3), (Y6, X6, X5), (Y6, X6, ¥5, X5),

(Y6, X6, X5, X4), (Y6, Y4, X6, X5, X4), (Y6, X6, X5, X4, X3),

(Y6, X6, X5, X4, X3, X2), (Y6, Y4, X6, X5, X4, X3), (Y65 Y4, ¥3, X6, X5, X4, X3),
(Y6, X6, X5, - - - X1), (Y6, ¥2, X6, X5, . .., X2), (6> Y4, X6, X5, ..., X2),

(Y65 Y55 X6, X5, - . ., X1), (Y6, Y5, Y4, X6, X5, . -, X1), (Y65 Y5, Y4, Y3X6, X5, ..., X1),
(V65 Y55+ v s Y2, X6, X5+ 5 X1), (V65 Y55 -+ s Y15 X6, X5, -+ -, X1)-

Problems

7.21 Give an example of a chordal and claw free graph which is not Koszul.
7.22 Determine a Koszul filtration for a path graph.

7.23 Let G be a complete graph. Determine a Koszul filtration of S/Jg.
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7.24 Let G be a closed graph. Show that the ideal (xy, ..., x,)/Jg admits a linear
S/ Jg-resolution. Is this resolution finite?

7.25 Compute the S/Jp,-resolution of the ideal (x1, x2)/Jp,.

7.5 Permanental Edge Ideals and Lovasz—Saks—Schrijver
Ideals

In this section we study classes of ideals which are attached to a finite simple graph
G on the vertex set [n], and which are closely related to binomial edge ideals.

7.5.1 The Lovdsz—Saks—Schrijver Ideal L g

Let K be afield and S = K[x1, ..., Xn, V1, ..., Yn] be the polynomial ring over K
in 2n variables.

Definition 7.57 The permanental edge ideal I1g of G is the ideal generated by the
polynomials x; y; +x;y; with {i, j} € E(G), while the Lovdsz—Saks—Schrijver ideal
is the ideal L generated by the polynomials x;x; + y; y; with {i, j} € E(G).

More generally, if X = (x;;) is an n x n-matrix, then the permanent of X is the
polynomial

n
rPx = Z Hxin(i)v

T o=l

where the sum is taken over all permutations 7 of [n]. Thus the permanental edge
ideal I1; is generated by the permanents of those 2 x 2-submatrices of the 2 x n-
X1 Xp
Y1 Yn

The Lovasz—Saks—Schrijver ideals belong to a more general class of ideals which
are related to orthogonal representations of graphs as introduced by Lovédsz [142]
in 1979. Let d > 1 be an integer, and as in previous sections we denote by G the
complementary graph of G with edge set E(G) = ([g]) \ E(G). An orthogonal
representation of G in R? is a map ¢ from [1] to R? such that for any edge {i, j} €
E(G) in the complementary graph, the vectors ¢ (i) and ¢(j) are orthogonal with
respect to the standard scalar product in R¢. Formulated differently, if we identify
the image of the vertex i with the i-th row (u;1,...,u;q) of an (n x d)-matrix
U = (uij), jenixla] € R, then the set of all orthogonal representations of the
graph G is the vanishing set in R"*4 of the ideal Lz CRlxj: i=1,...,n, j=
1,...,d], where L is generated by the homogeneous polynomials

matrix X = > which correspond to the edges of G.
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d
> xikxj (7.14)
k=1

In this context, the Lovdsz-Saks-Schrijver ideal Lg of G is just the ideal of
orthogonal representations of G when d = 2.

Lovész, Saks, and Schrijver considered general-position orthogonal representa-
tions, that is, orthogonal representations in which any d representing vectors are
linearly independent. In [143, Theorem 1.1] they proved the remarkable fact that G
has such a representation in R if and only if G is (n — d)-connected in which case
L is a prime ideal.

In the following remark we exhibit the relationship between binomial edge ideals,
permanental edge ideals, and Lovdsz—Saks—Schrijver ideals.

Remark 7.58

(a) Assume that v/—1 € K and char(K) # 2. We consider the following linear
transformation ¢ with ¢(x;) = x; — y; and ¢(y;) = N=1(x; + y;) for all i.
Then for every i # j, the binomial x;x; + y; y; maps to —2(x;y; + x;y;). Thus
L is mapped to 1 under this transformation.

(b) If V/=1 € K and G is a bipartite graph, then L; may be identified with
the binomial edge ideal J; of G. Indeed, suppose V(G) = Vi U V3 is the
bipartition of G with |V1| = m and |V»| = n. We apply the automorphism
of K[x1,...,%Xn, y1,..., Yn] to Lg defined by x; — x; and y; — «/—_1y,- to
obtain the binomial edge ideal Js attached to the matrix

[Zl"‘Zn]

wy - Wy ’

where z; = x; fori = 1,...,m,z; = ~/—1lyifori =m+1,...,n, w; =
~—=lyjfori=1,...,m,andw; =x; fori =m+1,...,n.

Like for binomial edge ideals it can be shown that 1 is a radical ideal, provided
char(K) # 2.Indeed, in [125] it is shown that parity binomial edge ideals are radical
provided the characteristic is not two. If /—1 € K, then the linear transformation
xi > x;fori =1,...,nand y; — \/—_ly,' fori = 1, ..., n maps permanental
edge ideals to parity binomial edge ideals, and hence in this case permanental edge
ideals are radical. The case that /—1 ¢ K is treated similarly as in the proof of part
(a) of the next theorem.

As a first consequence we obtain

Theorem 7.59 Let G be a graph on [n].

(a) Ifchar(K) # 2, then L¢ is a radical ideal.
(b) Ifchar(K) = 2, then L is a radical ideal if and only if G is bipartite.
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Proof

(a) Assume first that /—1 € K. Then L and [T arise from each other by a linear
change of coordinates, as we have seen in Remark 7.58. Hence L is a radical
ideal if and only I1g is.

Now suppose that /—1 ¢ K. We choose a field extension L/K with
V=1 € L.Then Lg ®« L C L[x1,...,%Xn, y1,..., yn] is generated by the
same binomials as Lg, and hence by the first part of the proof it follows that
LG ®k L is aradical ideal. Suppose L¢ is not radical. Then there exists f ¢ Lg
such that fk € L¢ for some k. It follows that fk € Lg Qg L. It remains to
show that f ¢ Lg ®k L. Suppose this is not the case. Let uy : S/Lg — S/Lg
be the S/Lg-module homomorphism induced by multiplication with f. Then
Im(uy ®k L) = 0, because f € Lg ®k L. Since L is a flat K-module, it
follows that Im(u r ®x L) = (Impuy) ®k L, and hence Impu ) @ L = 0.
Since L is even faithfully flat over K, we conclude that Im p y = 0. This implies
that f = 0, a contradiction.

(b) Since char(K) = 2, we have that /—1 € K. Hence if G is bipartite,
Remark 7.58 implies that L arises by a linear transformation from the binomial
edge ideal Jg which is known to be radical by Corollary 7.13. Thus L¢ is
radical as well in this case.

It remains to consider the case that G is not bipartite. We want to show that Lg
is not a radical ideal. According to the subsequent Lemma 7.60 it is enough to prove
that L Sy is not a radical ideal. Here Sy denotes localization of S with respect to
the multiplicative set Y consisting of the powers of y;y; - - - y,. In Sy all monomials
in the y; are units. Via the change of variables x; +— z; = ;L: fori =1,...,n we
identify Sy with K[z1, ..., zn, ylil, e, y,jfl]. Thus the ideal Lg Sy is generated by
the elements z;z; + 1 for {i, j} € E(G). We further transform z; = w; :=1+z;
fori = 1,...,n. Then LsSy is generated by the elements w; + w; + w;w; for
{i,j} € E(G)in Sy = K[wq, ..., wy, ylil, ...,ynil]. Since G is non-bipartite,
there exists a subgraph of G which is an odd cycle, say C,,. We may assume that
V(C,;,) = [m]. Note that

m—1 m—1
Z(wi F Wil Fwiwit1) + (Wi + Wy + Wiwy)= Zwiwi+1 + wiwy,, (7.15)
i=1 i=1

since char(K) = 2, and each w; appears twice in the sum on the left-hand side
of the equation. It follows that Z;";ll wiwi4+1 + wiw, € LgSy. We also have
wi—1W2;i + woiwriy1 € LgSy foralli =1,..., (m — 1)/2, because

Wi —1W2i + W2 w2i+1 = W21 (Wai—1 + W2 + W2 w2i—1) (7.16)

+ woi—1(w2; + Woig1 + W2 W2i41).
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From (7.15) and (7.16) we deduce that wjw,, € LgSy. By symmetry we also have

wiw;y+1 € LgSy fori = 1,...,m — 1. This implies that w; + w,, € LgSy
and w; + wiy1 € LgSy fori = 1,...,m — 1. Hence wiz+1 € LgSy for
i=1,...,m — 1, because wl.zJrl = w;+1(w; + wit1) + w;w; 4. Similarly, w% €

L Sy. In order to conclude the proof of the theorem, we show that w; ¢ LgSy
foralli = 1,...,m. Let F be the quotient field of K[ylil, ...,yfl] and let
A = Flwy, ..., w,]/ (W1, ..., wy) = Flwy, ..., wy]. It is enough to show
that w; ¢ LgA for all i = 1,...,m. The above calculation has shown that
LA is a graded ideal generated by the linear forms wi + wy, and w; + w;4; for
i=1,...,m—1, and by the monomials wjw,, and w;w;4+; fori =1,...,m — 1.
Since w; + wy,, = Z;”;ll(w,- + w;4+1) we see that dimp(LgA); < m — 1, and
hence not all w; belong to LgA. Say w; ¢ LgA. Since w; + w;jy+; € LgA for
i =1,...,m,itthen follows that w; & LgA fori =1,...,m. m]

In order to complete the proof of the preceding theorem we need

Lemma 7.60 Let T C S be a multiplicatively closed set, and let I C S be an ideal
such that 1St is not radical. Then I is not radical.

Proof Since ISt is not radical, there exists f/t € St \ ISt and an integer k > 1
such that (f/1)* e ISy. It follows that f¥/1 € ISy. Therefore, there exist g € I
and fo € T such that f%/1 = g/19, and hence (o f)¥ = t(l)‘flg € I. Assume that
tof € I.Then f/t = (tof)/(tot) € I ST, a contradiction. O

7.5.2 The Ideals Ik, and Ik, ,_,,

It is our aim to understand the primary decomposition of the ideals L. As we have
seen in Theorem 7.59, the ideal L is reduced when char(K) # 2. In particular, this
is the case when v/—1 ¢ K. Thus in this case L is the intersection of its minimal
prime ideals.

Our first aim is to identify those minimal prime ideals of L which do not contain
any variable. We denote by K, the complete graph on [m] and by K, ,—» complete
bipartite graph on [n] with vertex partition [n] = {1, ..., m}U{m + 1, ..., n}.

We define the ideals /g, and Ik, ., in S = K[x1,..., X, ¥1,...,Ya] as
follows:

Weset I, = (0), Ik, = (x1x2 + y1y2) and for n > 2, we define I, as the ideal
generated by the binomials

fij =xixj+yiy;, 1=<i<j<n,
gij = Xiyj —Xjyi, 1<i<j=<n, (7.17)

hi = x? + y?2, 1<i<n.
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For 1 <m < n we define Ik, ,_,, as the ideal generated by the binomials

fij =xixj+yiyj, 1<i<m, m+1<j<n,

gij =Xxiyj—Xxjyi, l<i<j<m or m+1=<i<j=<n (718)

Throughout this and the following sections, when we refer to the standard
generators of the ideals Lg, Ik, , and Ik, ,_, we mean the generators introduced
in Definition 7.57, and in (7.17) and (7.18), respectively.

Theorem 7.61 Let G be a connected graph on [n], and let P be a minimal prime
ideal of Lg which does not contain any variable. Suppose that /=1 ¢ K. Then
P = I, _, for somem or P = Ig,, depending on whether G is bipartite or G is
non-bipartite.

Proof Suppose first that G is bipartite with vertex bipartition [n] = {1, ..., m}U{m+
1,...,n}. We have Lg C Ik, ,_, and claim that LS, = Ig,,,_, Sy, where S,

denotes localization of S with respect to multiplicative set consisting of the powers

of y = y1y2-- - yu. Inthe case that G = K ; there is nothing to prove. Thus we may

assume that G has at least three vertices. It suffices to show that Ix,, ,_,, Sy C LgSy.

The ideal LSy is generated by the elements z;z; + 1, where {i, j} € E(G) and

where z; = x;/y; fori = 1,...,n. We will show that z; — z; € LgSy for all

l1<i<j<mandforallm+1 <i < j < n. This together with the fact that

Ix,, ,_,, Sy 1s generated by the polynomials

zizj + 1, I<i<m, m+1<j<n, (7.19)

Zi—2zj,1<i<j<m or m+1=<i<j<n, (7.20)

will then imply that indeed Igp,mSy C LGSy Letl <i < j < m (the case
m+1 <i < j < n can be treated similarly). Since G is connected, there exists
apathi = ig,i1,...,ios = jin G. We have z; — 2 = Y ;_1(Zin,_» — Zip,)- SO it
suffices to prove each of the summands z;,,_, — zi,, € LgSy. Thus we may as well
assume that s = 1. We have z; — z; = zj, — 2i, = 2ip(2i; 2, + 1) — 2, (Zigzi; + 1)
which is an element of L Sy. It proves the claim that L S, = Ik, ,_,, Sy. It follows
that Ig,, ,_,, Sy C PSy, and hence Ik, ,_, C P,since P is aprime idealand y ¢ P.
Finally, since P is a minimal prime ideal of L¢, and Ik, ,_,, is a prime ideal as we
shall in Theorem 7.65, we have P = Ik, ,_,..

Next we consider the case that G is not bipartite. Similarly as in the bipartite
case we have Lg C Ik, and claim that LS, = Ik, Sy. It suffices to show that
Ig,Sy C LgTy. The ideal LgSy is generated by the elements z;z; + 1, where
{i, j} € E(G). We will show that z; —z; € LgSy forall 1 <i < j < n. This
together with the fact that /g, Sy is generated by

zzj+lzi—zj, l=<i<jsn, (7.21)

241, l1<i<n (7.22)
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will then imply that indeed /g, Sy C LSy . In fact, the polynomials (7.22) are linear
combinations of the Equation (7.21), as can be seen from

Z4+ 1=z —z) + iz + 1)

foralli < j.

Let 1 <i < j < n. Since G is non-bipartite, there exists an even walk (not
necessarily a path) in G connecting i and j. As in the bipartite case, we deduce
from this fact that z; — z; € LgSy. As in the previous case it follows that Ix, C P,
and hence P = Ik, since by Theorem 7.66, Ik, is a prime ideal. |

In order to complete the proof of Theorem 7.61 we need to show that the ideals
I, and Ik, ,_, are prime ideals in the case that V—1 ¢ K. The rest of the section
is devoted to prove this. In a first step we show that the standard generators of these
ideals form a Grobner basis.

Lemma 7.62 The standard generators of Ik, and the standard generators of
Ik, ... form a Grébner basis with respect to the lexicographic order induced by
X] > > Xy > Y>> Yy

Proof The assertion of the lemma follows once we have shown that for either
of the ideals all S-polynomials of the standard generators reduce to zero; see
Theorem 1.29. If the initial monomials of a pair of binomials do not have a common
factor, then this S-polynomial reduces to zero; see Corollary 1.30. Hence, in what
follows, we only have to consider the case that the initial monomials have a common
factor. In this case simple calculations show that such S-polynomials reduce to zero.
We provide two examples and leave the remaining cases to the reader. First, for the

standard generators i; and f;; of Ik, we have S(h;, fij) = —igij, and second for
the standard generators f;; and fix of Ik,,,_, we have S(fi;, fit) = —yigjk for
l<i<mandm+1<j<k<n. m]
Corollary 7.63 Let 1 < m < n. Then the variables x1, ..., Xn, Y1, ..., Yn are non

zero-divisors modulo 1k, and modulo Ik

mmn—m"*

Proof 1t follows from Lemma 7.62 that y; does not divide any of the monomial
generators of in (/g, ), where < is the lexicographic order induced by x; > --- >
Xp > y1 > --- > y,. This implies that y; is a non zero-divisor modulo in. (/g,).
Consequently, by Problem 2.24, y; is a non zero-divisor modulo /g, . By symmetry,
all y; are non zero-divisors modulo Ik, . Furthermore, if we consider the initial ideal
of Ik, with respect to the lexicographic order induced by y; > --- > y, > x1 >

- > Xy, then as before it follows that x1 is a non zero-divisor modulo in. (/g, ), and
hence modulo Ik,. Again by symmetry it follows that all x; are non zero-divisors
modulo /g, .

We apply again Lemma 7.62 and deduce that y; and y,,+; do not divide any of
the monomial generators of in.(/x,,,_, ). This implies that y; and y, | are non
zero-divisors modulo in-(/g,, ,_, ). Consequently, by Problem 2.24, y; and y;+1
are non zero-divisors modulo /g Again employing symmetry it follows that

m,n—m"*
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all y; are non zero-divisors modulo /g, ,_,,. The same arguments as used for the
Ik, now show that x; and x,41, and hence all x; are non zero-divisors modulo
Km.n—m' o
As another consequence of Lemma 7.62 we have

Corollary 7.64 height(/k,) = n and height(Ik,, ,_,,) =n — L.

Proof Since height(I) = height(in.(/)) for any graded ideal I C §
(see Theorem 2.19(b)), it suffices to show that height(in.(/g,)) = n and
height(in. (/g,, ,_,)) = n — 1. By Lemma 7.62, in.(Ix,) = Ji + Ja, where
Ji=(x1,...,x)%and Jp = (xjyj: 1 <i < j <n). Hence (x1,...,x,)1is a

minimal prime ideal of in.(/g,), and any other monomial prime ideals in.(/k,)
has height > n. It follows that height(in< (/g,)) = n, as desired.
To compute the height of I, ,_,, is more involved. By Lemma 7.62, we have

inc(Ug,,,.,) =@xj:1<i<mm+1=<j=<n) (7.23)

+ (iyj:1<i<j<morm+1<i<j<n),

Thus in. (/k,,,_,) may be viewed as the edge ideal of a bipartite graph H on the
vertex set V = V| U V, with

Vl :{x17-~-1xms)’m+2a---,)’n}and V2:{xm—l—ls"'7xn9y27'-'9ym}'

We label the vertices of H suchthat Vi = {v, ..., v,—1}and Vo = {wy, ..., wy—_1},
where v; = x; for 1 <i <m,v;i = Ypgmt1—iform+1<i <n—1,w; = xp4i
forl <i<n—m,and w; = y,_j41 forn —m + 1 <i <n — 1. Figure 7.7 shows
an example of such a graph form =2 andn = 5.

Recall that a Ferrers graph is a bipartite graph H  on V = A U B with A =
{a1,...,ap}and B = {by, ..., by} such that {ai, by} € E(H'), {a,,b1} € E(H),
and if {a;,bj} € E(H'), then {a;,b;} € E(H') forall1 <t <iand1 <1 < .

Associated to a Ferrers graph H' is a sequence A = (A1, ..., A,) of nonnegative
integers, where A; = degy a; which is the degree of the vertex a; in H’ for all
i=1,...,p.

It can be seen that H with the labeling of the vertices as given above is a Ferrers
graph.
We show that S/in(/k,, ,_,) 18 Cohen-Macaulay. In particular it follows then

that in(/g,, ,_,) is an unmixed ideal of height |V|| = |V2| = n — 1, as desired.
Fig. 7.7 An example of a x T Ys Y4
Ferrers graph

T3 Ty T5 Y2
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In order to prove that S/in(lg,,,_,,) is Cohen-Macaulay we refer to the algebraic
theory of Ferrers graphs as developed by Corso and Nagel in [42]. According
to [42, Corollary 2.7] we need to compute the sequence XA associated to H.
By (7.23), degyv; = degyx; = n — i foralli = 1,..., m. Moreover, since
by (7.23), degpyy; = j—1—m, forall j = m + 2,...,n, it follows that
degy vi = degy Ynym+1—i = n —iforalli = m+1,...,n — 1. Therefore,
A=m—1,n—-2,...,2,1) is the associated sequence to the Ferrers graph H,
and hence by [42, Corollary 2.7], it follows that S/in_ (I Kmnem) is indeed Cohen—
Macaulay. O

Theorem 7.65 The ideal Ik,,,_,, is a prime ideal.

Proof Because of Corollary 7.63 it suffices to show that Ix,, ,_,, Sy is a prime ideal
in the ring Sy, where as before S, denotes the localization with respect to y =

yiy2: - Yn-
In order to see that Sy /I, ,_,, Sy is a domain, we first consider the quotient R of

Sy by the linear forms in (7.20) and denote by 1 the image of 1 Kpm.nmSy in R. Notice

that R is isomorphic to K[z1, Zmt1, yftl, ..., yE", and that Sy /I, , . Sy=R/IR.
Since the residue class map Sy, — R identifies z; with z; fori =1, ..., m and with
Zm41 fori =m +1,...,n, we see that 1= (z1zZm+1 + 1). Since the polynomial
21Zm41 + 1 is irreducible, we conclude that R/T R, and hence also Sy/ 1K Sy 18
a domain, as desired. m]

Theorem 7.66 Letn > 2 be an integer.

(@) If v/—1 ¢ K, then Ik, is a prime ideal.
(b) If v/—1 € K and char(K) # 2, then Ik, is a radical ideal. More precisely,

=1 +v=1ly,....xn +V=1y)N(x1 — vV —=1y1, ..., xp — vV =1yn).

(c) Ifchar(K) = 2, then Ik, is a primary ideal with

VI, = @1+ y1, .0, X0 + yn).

Proof As in the proof of Theorem 7.65 we consider the image I, Sy of Ik, in Sy =

Klz1,..., Zn, yftl, cees y,jf]]. It is generated by the polynomials (7.21) and (7.22).
Let R be the residue class ring of Sy modulo the linear forms given in (7.21).
Then R=K[z1, yi', ..., yF'land S, /Ix, Sy=R/(z3 + 1)

(a) It follows that if =1 ¢ K, then Sy/Ik, Sy is a domain, and hence Ik, is a
prime ideal in this case.

(b) Since Sy/Ik,Sy=R/((z1 ++/—1)(z1 — ~/—1)) it follows that I, is radical and
has exactly two minimal prime ideals. The ideals P; = (x1 + =1 Viyewws Xp+
\/_yn) and P = (x1 — \/_yl, e Xy — «/—_lyn) are prime ideals of height
n containing I, . By Corollary 7.64 we have height(K,,) = n. It follows that
{P1, P>} is the set of minimal prime ideals of /g, .
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(c) Since char(K) = 2, we have xi2 + yl.2 =(x; + yi)2 for all i. This shows that Ik,
is not a prime ideal in this case. Furthermore, it follows that x; + y; € \/E
for all i. Since for all i < j, gij = (x; + yi)x; + (x; + y;)x; and f;; =
(xi +yi)xj + (x; + y;)yi, we see that \/Ix, = (X1 + y1,..., Xy + yn), as
desired. |

7.5.3 The Minimal Prime Ideals of Lg When ~/—1 ¢ K

By Theorem 7.59 the Lovdsz—Saks—Schrijver ideal L is reduced provided +/—1 ¢
K. Thus L is the intersection of its minimal prime ideals, and this intersection
represents its primary decomposition. It is the aim of this section to determine the
minimal prime ideals of L¢ for the case that =1 ZK. N

Let H be a connected finite simple graph on the vertex set V. We define H
as follows: if H is not bipartite, then H is the complete graph on V, and if H is
bipartite, then H is the complete bipartite graph on the given bipartition of H. Since
H is connected this bipartition is unique.

Let G be a finite graph on the vertex set [n]. For T C [n] we set

QT(G) = ({-xl'v )’i}ieT, 151 LI ] Ié(:(T))»

where G1, ..., G¢r) are the connected components of G\ 7. Note that if G; is not
bipartite, then 15,- = Ik, for some n;, and if G; is bipartite, then Igi = Ig
for some m; and n; . l

It will turn out that the minimal prime ideals of L are all of the form Q7 (G).
With the information given in Lemma 7.64 the height of these ideals can be easily
determined.

mj.n;—m;

Proposition 7.67 Let G be a graph on [n] and let T C [n]. Then
height Q7 (G) = |T| +n — b(T),

where b(T) denotes the number of bipartite connected components of Giu)\T-

Proof We may assume that G1, ..., Gp(r) are the bipartite connected components
of G and Gy(7y+1, - - ., G¢(r) are the non-bipartite connected components of G. Let
nj=|V(Gj)lforall j =1,...,c(T). Since the ideals (x;, y;: i € T) and 15/, for
j =1,...,c(T) are on pairwise disjoint sets of variables, it follows together with
Lemma 7.64 that

b(T) c(T)
height O7(G) = height(x;, y; :i € T) + Y height(/g,) + > height(/z,)
j=1 j=b(T)+1
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b(T) o(T)
=2AT|+ Y (j =D+ Y. ny
j=1 j=b(T)+1
b(T) o(T)
=TI+ (TI+ Y nj+ Y n)—b(T)
j=1 j=b(T)+1
=|T|+n—b(T),
as desired. |

Next we have

Proposition 7.68 Let G be a graph on [n] and suppose that /—1 & K. Then for
all T C [n], the ideal Q1 (G) is a prime ideal and Lg C Q1(G).

Proof That Lg C Qr(G) is an immediate consequence of Theorem 7.61.

Note that Q7(G) is of the form I = >, Ik, . .. + 2 ; Ik, + U, where
U is generated by variables, and where Ig,, . ., IKtj and U are defined on
pairwise disjoint sets of variables. Let S’ = S/U. Then S’ may be identified
with a polynomial ring in the remaining variables and I/U C S’ identifies with
J =2 Iy, T 225 I, C S§’. Thus it suffices to prove that J is a prime ideal.
This will be a consequence of the following more general fact («) (similar to that of
Lemma 7.14): for j =1, ..., m, let I; be an ideal in the polynomial ring

Klx11, ooy X0y X215 o+ o X200 o s XLy« -+ s Xy,

satisfying the following properties:

(i) the set of generators ¢; of I; is a subset of K[x;1,..., X/, j]
(ii) for all j the coefﬁcwnts of the elements of ¢; are +1 or —1;
(iii) for any domain B with /—1 & B the ring B[xll, .. x/,,j]/(gj)B[le, e,

Xjn;]1s a domain and v/—1 & Blxj1, ..., x]nj]/(%)B[le, oo Xjng ]

Then Iy + - - - + I, is a prime ideal.

Before proving the (x) let us use this fact to show that J is a prime ideal. In our
particular case the ideals /; are the ideals I, ., and [ Ki,- . Let 7 be the set of
generators of Ik, ., asin(7.19) and (7.20) and % be the set of generators of / Ki;
as in (7.21) and (7 22) Clearly the conditions (i) and (ii) are satisfied. Let B be a
domain with /=1 ¢ B. We first show that B[x;1. ..., xjn,;1/ () BIxj1. ..., Xjn;]
and Bl[xj, ...,xj,,j]/(%)B[le, ...,xj,,j] are domains. As in the proofs
of Theorem 7.65 and Theorem 7.66, where it was shown that /g, =~ and
Ik, are prime ideals, we need to show that ziz,4+1 4+ 1 generates a prime
ideal in B[z, Zm+1, ylﬂ,...,y,f]] and that z% + 1 generates a prime ideal
in Blzi, yftl, ce Vi *11" But this is obviously the case since «/—1 ¢& B.
Suppose J=1 € Blxj1, .. .,xjnj]/(ifj)B[x]], .. .,xj,,j]. Then there exists
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f € Blxji1, ..., xjn;] such that f2+1e€ Jj where J; = () Blxj1, ..., Xjn;].
Since J; is a graded ideal, all homogeneous components of f 2 4+ 1 belong to Jj.
Therefore if b is the constant term of £, then b> 4+ 1 € J; j» which is only possible 1f
b% + 1 = 0. However since ~/—1 & B, we obtain a contradiction.

Proof of (x): We proceed by induction on m. The assertion is trivial for m = 1.
Let B = K[X11, .0, Xln» X205 o5 X2nps « oo s Xm=1)1» « -+ » x(m—l)nm_]]/(%la cey
%,,—1)- Then by our induction B is a domain and =1 ¢ B. Moreover, we have
R/(Ii+ -+ 1,)=B[xm1, ..., x.,'mj]/(%m), and hence (iii) implies that 11+ - -+ 1,
is a prime ideal. O

Theorem 7.69 Suppose that /—1 & K. Let G be a graph on [n], and let P be a
minimal prime ideal of Lg. Then there exists T C [n] such that P = Q7 (G).

For the proof of this theorem we need

Lemma 7.70 Let G be a connected graph on [n], and let P be a minimal prime
ideal of L containing a variable. Then there exists k € [n] such that xi, yx € P.

Proof If G = K», then Lg is a prime ideal, and hence P = Lg. Since Lg
does not contain any variable, there is nothing to prove in this case. Now suppose
that G # K, and that x; € P. Let us first assume that G is a bipartite graph
on the vertex set [n] with the bipartition {1,...,m} U {m + 1,...,n}. Suppose
on the contrary that there exists no k € [n] such that xi, yy € P. We claim
that (x1, ..., Xm, Ym+1,--->¥Yn) C P. Given j € [m], there exists a path i =
i0, i1, ...,12¢ = j. Here we used the fact that G is connected. We show by induction
on ¢ that x; € P. Suppose that £ = 1. Since x;,x;; + yi,y;; € P and x;, € P but
Yi, ¢ P, it follows that y;, € P. Similarly, since x;, x;, +yi,; vi, € P and y;; € P but
x;; ¢ P,itfollows that x;, € P. Since iy, ...,i¢ = j is a path of length 2(¢ — 1)
and x;, € P, by induction hypothesis it follows that x; € P. By a similar argument
forany j € {m +1,...,n}, we have y; € P. Hence we have

LG C IKm,nfm g (xla "‘7~xm7 Ym+l’ -‘-a)’n) C Pa

which contradicts the assumption that P is a minimal prime ideal of Lg because
Ik,, ,_n 1s a prime ideal; see Theorem 7.65. Therefore, it follows that xi, yx € P
for some k. Next assume that G is a non-bipartite graph. Since G is connected and
non-bipartite, there exists j € [n] and an even path i = ip,i1,...,i2; = j, and
an odd path i = jo, ji,..., jos—1 = j in G connecting i and j. If there exists £ =
io, yiorord = jo, ..., jas—1 Withxg, y¢ € P, then we are done. Otherwise, by an
argument as in the bipartite case, we deduce from the generators x;, x;,_; + Vi, Yi, .,
forallr =0,...,2t — 1, that x; € P. Similarly, we see that y; € P by considering
the generators attached to the odd path. O

Proof (of Theorem 7.69) We prove the theorem by induction on the number of
vertices of G. If |V(G)| = 2,then G = K1 and Lg = Qg(G). Now suppose
that |V (G)| > 2, and let G1, ..., G; be the connected components of G. Suppose
first that + > 1. Fori = 1,...,¢ let P; be a minimal prime ideal of Ls, which
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is contained in P. Then 2521 P; C P. Since |V(G;)| < |V(G)| for all i, our
induction hypothesis implies that there exist subsets 7; such that P; = Qy(G;)
for all i. Therefore, Zle 071,(G;) C P. Since Zle 071,(Gi) = Qr(G) where
T = U;zl T;, it follows that Q7 (G) C P. By Proposition 7.68, Q7 (G) is a prime
ideal, and hence P = Qr(G) because P is a minimal prime ideal of L. Next
suppose that t = 1. If P does not contain any variable, then by Theorem 7.61
either P = Ik, or P = Ik, ,_, for suitable m. In either case, P = Qy(G). If
P contains a variable, then by Lemma 7.70, there exists k such that x, yr € P.
Let P = P/(xx, yr). Then P is a minimal prime ideal of LG, - By induction
hypothesis, there exists 7 C [n] \ {k} such that P = O5(Gan\y)- It follows that
P = 07(G) where T = T U {k}. Since by Proposition 7.68 all Q7 (G) are prime
ideals and each Q7(G) contains Lg, the identity Lg = ﬂTC[n] O7(G) follows
from the first part of the theorem and the fact that Lg = +/Lg, as noticed in
Theorem 7.59. O

As a consequence of Theorem 7.69 we obtain a primary decomposition of Lg
which in general is highly redundant.

Corollary 7.71 Let G be a graph on [n] and suppose that /—1 & K. Then

L= [ Qr(G).

TCln]

Combining Proposition 7.67 with Theorem 7.70 we obtain

Corollary 7.72 Let G be a graph on [n], and assume that /—1 ¢ K. Then
dim(S/Lg) = max{n — |T|+b(T): T C [n]}.

In particular, dim(S/Lg) > n + b where b is the number of bipartite connected
components of G. Moreover, if L is unmixed, then dim(S/Lg) =n + b.

Proof The equality follows from Proposition 7.67 and Theorem 7.70, and the
equality implies the inequality dim(S/Lg) > n + b. From Theorem 7.61 one
deduces that Qy(G) is a minimal prime ideal of L. Hence if L is unmixed, then
dim(S/Lg) = dim(S/Qp(G)) =n + b. ]

Note that the lower bound given in Corollary 7.72 may be strict. For example, let
G be the graph which is shown in Figure 7.8. Then dim(S/Lg) = 6, whilen = 5
and b = 0. On the other hand, dim(S/Lg) = n + b does not in general imply that
L is unmixed. For instance, dim(S/Lg, ,) = 5 and in this case we have n = 4 and
b =1, but Lg,, is not unmixed.

Fig. 7.8 The butterfly [ ]
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In order to obtain an irredundant primary decomposition of Ls we have to
identify those T C [n] for which Q7 (G) is minimal with respect to inclusion among
the ideals Q7/(G) with T’ C [n].

The next result clarifies the inclusion relations between the ideals Q7 (G) for
T C [n].

Proposition 7.73 Let G be a graph on [n], and let T, T’ C [n]. Furthermore, let
Hy, ..., Hy and Gy, ..., Gg be the connected components of Giupnr and G717,
respectively. Then Q7(G) C Q7/(G) if and only if T C T’ and for all i € [t]
with |V (H;)| > 1 there exists j € [s] such that V(H))\ T C V(G;), and if H; is
bipartite (resp. non-bipartite), then G is also bipartite (resp. non-bipartite).

Proof For every A C [n], let Uyx = (xij,y; : i € A). Then Qr(G) =

r, Igl, e, [ﬁl) and Q7/(G) = (U, 151’ e, Iax). One has Q7 (G) C Q7/(G)
if and only if T C T’ and (Ugv, Iﬁl, ...,Iﬁ[) c (Uypr, 151,...,1@). For all
i=1,...,t,let] b be the ideal generated by those generators of /7 which belong
to R = K[x;,y; :i € [n]\ T']. Then WUr g, 1) = (UT/,I;? Lo IR,
t 1 H,
It follows that Q7(G) C Q7/(G) if and only if T C T’ and (U7, 11/‘71’ A I/ﬁ) C
t
(U7, 1§, -, Ig,). The latter inclusion holds if and only if (I’~1, e I’ﬁ) -
(g, -, Ig,), since the generators of the ideals (1;7,’ e 1;7[) and (Ig,, ..., 15,)

belong to R. Now suppose 7 C T’. It is enough to show that the following
conditions are equivalent:

(i) Forall i € [t] with |V (H;)| > 1, there exists j € [s] such that V(H;) \ T’ C
V(G), and if H; is bipartite (resp. non-bipartite), then G; is also bipartite
(resp. non-bipartite).

5 / /! ~ ~

(i1) (I~I, Iﬁr) C g, - 1g)-

The implication (i) = (ii) is obvious. For the converse, leti € [¢] with |V (H;)| >
l,and let k € V(H;) \ T'. Then k € V(Gj) for some j € [s]. We claim that
VH)\T' C V(G).If V(H;) \ T" = {k}, there is nothing to prove. So we may
assume that |V (H;) \ T'| > 2. Suppose that there is an element [ € V(H;) \ T’
such that [ # k and I ¢ V(G;). Then there exists r € [s] with r # j such that
| € V(G,). We may assume that k < [. First suppose that H; is a bipartite graph on
A1 U Aj. Since V(H;) \ T' is nonempty, it follows that each connected component
of (H;)[u\r 18 a connected component of Gy,1\77, and since H; is bipartite, each of
its components is bipartite as well. Hence

N
VHI\T' ¢ | V(Ga. (7.24)
Gd‘l][);;rlile
In particular, G; and G, are bipartite. If k,/ € Ay ork,l € Az, then gy = x;y; —
XYk € I;i' Hence by assumption (ii), gk € (151, A ng). Thus
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P
g =Y T, (7.25)
=1
where r; € § and each ¢, is a generator of (/5 ,..., 15 ). Now, form # kI,

we put all variables x,, and y,, equal to zero in the equallty (7.25) and denote by
g, the image of g; under this reduction. Then all g, which are different from the
binomials fi;, gk, hx and h; listed in (7.17) and (7.18), are zero. Since k and [
are contained in the different components G; and G, respectively, it follows that
q; # fi, gk Also, since k and [ belong to the bipartite components G ; and G,
respectively, it follows that g, # hg, h;. Thus we see that after this reduction the
right-hand side of (7.25) is zero while the left-hand side is nonzero, a contradiction.
Ifk € Ay and! € Ay, then fi; = xix; + yiy1 € 1117»' Hence by assumption (ii),
fu € (151, e, I@S). Then, similar to the previous clase, we get a contradiction.
Next, suppose that H; is non-bipartite. So gy = xxy1 — x1yx € I~ , and hence by

assumption (ii), gx; € (151, e, 155). Thus gy = th=1 riq:, where ry € S and
each ¢g; is a generator of (151, el 153). Now, as before, for m # k, [, we put all
variables x,, and y,, equal to zero in this equality After reduction it follows that gi;
can be written as gg; = r(xk + yk) +r (xl + ylz) for some polynomials r, ' € S,
which is a contradiction. Thus we see that indeed V (H;) \ T’ C V(G ). This proves
the claim. By (7.24), it also follows that if H; is bipartite, then G is bipartite.

Next we show that if H; is non-bipartite, then G is also non-bipartite. Indeed,
if H; is non-bipartite, then hy = x,% + y,% el ;7., and hence by the assumption (ii),
he € (UG, ... Ig,). Thus '

p

hie="riqu, (7.26)

=1

where r, € S and each ¢, is a generator of (151, ey I@j). If hy # q; forall t =
1, ..., p, then by setting all variables x,, and y,, equal to zero for m # k, as before,
we get hy = 0, which is a contradiction. It follows that h; = ¢g; for some ¢ =
1, ..., p. Therefore, hy is a generator of 151,, and hence G is a non-bipartite graph,
too. O

Now we are ready to determine the minimal prime ideals of L in the case that
V-1¢K.

Let G be a graph on [r]. In Section 7.2 we introduced a cut point of G as a vertex
i € [n] with the property that G has less connected components than G,)\i)- In
addition, we now call a vertex i € [n] a bipartition point of G if G has less bipartite
connected components than G,)\(;). Let .#Z (G) be the set of all sets T C [n] such
that each i € T is either a cut point or a bipartition point of the graph G )\ 1)ui)-
In particular, we have @ € .#Z(G).

Theorem 7.74 Let G be a graph on [n]. Suppose /—1 ¢ K. Then
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{Qr(G): T e #(G)}

is the set of minimal prime ideals of Lg.

Proof By Theorem 7.69 the minimal prime ideals of L are of the form Q7 (G)
with T C [n]. Assume first that Q7 (G) is a minimal prime ideal of Lg. We
want to show that T € .#(G). We may assume that T # {. Let Gy,..., G,
be the connected components of G,\7. Leti € T and 7' = T \ {i}. Now we
show that i is either a cut point or a bipartition point of the graph Gp,\7/. If i
is not adjacent to any vertex of G, ..., G, then the connected components of
Gunr are G, ..., G, together with the isolated vertex i. So Proposition 7.73
implies that Q7/(G) € Q7(G), a contradiction. Hence there exist some connected
components of Gy\r, say G, ..., Gi, which have at least one vertex adjacent to
i. Then G’l, G+, - .., Gy are the connected components of G\, where G’l is
the induced subgraph of G, 7/ on (UI;:1 V(G )) U {i}. First suppose that k = 1.
Then i is not a cut point of G,\77, and if G/ is bipartite, then G is also bipartite.
Therefore, by Proposition 7.73, we have Q7/(G) € Q7(G), which is again a
contradiction. Similarly, if G and G are both non-bipartite, we get a contradiction.
If G/ is non-bipartite and G is bipartite, then i is a bipartition point of G, 7.
Next suppose that k& > 2. Then clearly i is a cut point of Gp,\7/. Thus, indeed
T € #(G).

Conversely, suppose T € .Z (G). Since Qp(G) does not contain any variable,
it is not contained in any other Q7/(G). So Qp(G) is a minimal prime ideal of
L. Now let® # T € #(G) and let G, ..., G, be the connected components
of Gpu\r. Suppose that Q7(G) is not a minimal prime ideal of Lg. Then by
Theorem 7.69, there exists some 7' C T such that Q7/(G) € Qr(G). Let
i € T\ T Then i is either a cut point or a bipartition point of G (n\D)Uii)»
since T € .#(G). If i is a cut point of G, \1)uyi)> then by a similar argument
as in the first part of the proof, G’l, Gk+1, - .., G, are the connected components
of G ryugi)» where k& > 2 and G/1 is the induced subgraph of G (,\7yugi) on
(Ul;=1 V(G;)) U {i}. Thus Gy, 7’ has a connected component H which contains
G'| as an induced subgraph, and so U];-=1 V(G;) C V(H)\ T. Proposition 7.73,
this contradicts the fact that Q7/(G) C Q7(G). If i is a bipartition point but
not a cut point of G,\r)u(i). then by a similar argument as in the first part of
the proof, G’l, G, ..., G, are the connected components of G,)\7)uii}, Where
G/ is the induced subgraph of G\ syuiiy on V(Gy) U {i} such that G/ is non-
bipartite and G is bipartite. Thus Gp,},7- has a connected component H which
contains G| as an induced subgraph, and hence H is also a non-bipartite graph.
Moreover, V(G1) C V(H) \ T. Hence by Proposition 7.73, V(G1) = V(H)\ T,
since Q7/(G) C Qr(G). Applying Proposition 7.73 once again we obtain a
contradiction, since H is non-bipartite but G is bipartite. m]

Corollary 7.75 Let K be a field with char(K) = 0 or char(K) # 1,2 mod 4. Then
the ideal Lg is prime if and only if G is a disjoint union of edges and isolated
vertices.
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Proof Suppose first that G be a disjoint union of edges and isolated vertices. It
suffices to prove that L¢ is a prime ideal in the case that K is algebraically closed.
The ideal L¢ is the sum of ideals of the form (x;x; + y;y;) for i # j which are
defined on pairwise disjoint sets of variables, and hence S/L is a tensor product
of copies of K[x;, xj, yi, yj1/(xixj + yiy;) fori # j and a polynomial ring. Since
x;xj + y;y; fori # j is irreducible over any field, each factor is a domain. Now it
follows from [147, Proposition 5.17] that S/L¢ is a domain and hence that L¢ is
prime.

Conversely, suppose that L¢ is a prime ideal. We may assume that K is a prime
field. Then our hypothesis implies that /—1 & K. Since by Theorem 7.74, Qy(G)
is a minimal prime ideal of L, and since L is a prime ideal, it follows that Lg =
Qy(G). By Theorem 7.74, this implies that .Z (G) = {0}.

Let H be a connected component of G. The desired conclusion follows once
we have shown that H = K or a single vertex. First suppose that H is not a
complete graph. Then there exists a minimal non-empty subset 7' of V (H) with the
property that Hy )7 is a disconnected graph. It follows that each element i of
T is a cut point of H,)\1)uyi}. and hence a cut point of G (u)\)uyi}- Therefore, by
Theorem 7.74, T € .# (G), which contradicts the fact that .#Z(G) = {#}. Thus H
is complete. Let H = K,,, where V(H) = [m]and m > 3. Then T’ = [m]\ {1,2} €
M (G), since each element i of T’ is a bipartition point of the graph G .\ 7/)ui} =
K3. Therefore, we get a contradiction, and hence H = K or a single vertex, as
desired. |

As before, we denote by b(T') the number of bipartite components of G (,)\r)- By
using the correspondence between the set of minimal prime ideals of L and the set
A (G) given in Theorem 7.74, one obtains the following criterion for unmixedness
of the ideal L when /—1 ¢ K.

Corollary 7.76 Let G be a graph with b bipartite connected components, and
suppose that /—1 ¢ K. Then Lg is unmixed if and only if b(T) = |T| + b for
every =T € M (G).

Proof The ideal L is unmixed if and only if all the minimal prime ideals of Lg
have the same height. By Theorem 7.74, this is equivalent to say that forall @ # T €
A (G), height(Q7(G)) = height(Qy(G)). By Proposition 7.67, this is the case if
and only if for every @ = T € .#(G), we have b(T) = |T| + b. O

Problems

7.26 Letn > 3 be an integer, and let K be field with «/—1 ¢ K. We denote by C,
the cycle on [r]. Show that L¢, is unmixed if and only if » is odd.

7.27 Letn > 2 be an integer, K,, the complete graph on n, and let K be a field with
~/—1 ¢ K. Then Lk, is unmixed if and only if n = 2 or 3.
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7.28 Show that Ix
as well?

is a Cohen-Macaulay ideal. Is /¢, a Cohen—Macaulay ideal

m,n—m

7.29 Determine the minimal prime ideals of L p, for the path graph P, on [n] when
v—1¢ K.

7.30 Which are the minimal prime ideals of the complete bipartite graph on [7]
with vertex decomposition {1, 2, 3}U{4, 5, 6, 7} when /—1 ¢ K.

7.31 Suppose char(K) = 2. Find a nilpotent element in S/Lc, whenn > 1 is odd.

Notes

Binomial edge ideals were introduced by Herzog, Hibi, Hreinsdéttir, Kahle and
Rauh [97], and independently by Ohtani [169]. In both of these papers it was shown
that binomial edge ideals admit a squarefree initial ideal. Later, Badiane, Burke,
and Skoldberg determined in [8] the universal Grobner basis of a binomial edge
ideal and showed it coincides with its Graver basis.

The closed graphs are by definition those whose binomial edge ideals have a
quadratic Grobner basis with respect to the lexicographic order. Crupi and Rinaldo
[45] showed that a graph is closed if and only if there exists a monomial order for
which the binomial edge ideal has a quadratic Grobner basis.

In Theorem 7.7, a characterization of closed graphs in terms of the clique com-
plex of the graph was given by in Ene, Herzog, and Hibi [61]. This characterization
was used by Crupi and Rinaldo [46] to identify closed graphs as the so-called PI
graphs, as defined by Hajés [87]. The proof is given in Theorem 7.9. Combining
this theorem with Golumbic’s [82, p. 195] characterization of PI graphs (proper
interval graphs), one obtains Theorem 7.10. We present a self-contained proof by
Ene, relying only on Theorem 7.7. Several other properties and characterizations of
PI graphs can be found in [43, 74, 78, 88, 181, 182].

The minimal prime ideals of a binomial edge ideal are determined in [97]. This
information is used in [61] to classify all closed graphs whose binomial edge ideal
is Cohen—Macaulay. In [9], Banerjee and Nufiez-Betancourt relate the projective
dimension of S/Jg as well as the Cohen—Macaulay property of Jg to invariants
that measure the connectivity of G. In general not so much is known about the free
resolution of binomial edge ideals. However for some special cases the extremal
Betti numbers, the regularity, and in some cases the graded Betti numbers are
known, see [56, 219]. On the other hand, Kiani and Saeedi Madani [183] showed
that the binomial edge ideal Jg has a linear resolution if and only if G is a complete
graph, cf. Theorem 7.27. In [100] this result was generalized by describing the
linear strand of any binomial edge ideal. In Theorem 7.28(a) a lower bound for the
regularity of a binomial edge ideal is given. The proof is taken from the paper [144]
by Matsuda and Murai, while part (b) is due to Ene and Zarojanu [70]. They showed
that the lower bound is achieved by closed graphs. In the same paper Matsuda and
Murai proved (see Theorem 7.36(a)) that the regularity of the binomial edge ideal



238 7 Binomial Edge Ideals and Related Ideals

of a graph G is bounded above by its number vertices, and they conjectured that this
bound is achieved if and only if G is a path graph. This conjecture was proved by
Kiani and Saeedi Madani [129], and is presented in Theorem 7.36(b). For their proof
they use essentially Theorem 7.43 which is due to Mohammadi and Sharifan [148].
An alternative proof of Theorem 7.36(a) is given by Conca, De Negri, and Gorla in
[37]. In [184] Kiani and Saeedi Madani conjectured that the regularity of a binomial
edge ideal is also bounded by the number of maximal cliques of G, increased by
one. At present this conjecture is widely open.

There are conjectures regarding the comparison of the graded Betti numbers of
Jg and that of in. (Jg). In [61] it is conjectured that the extremal Betti numbers of
Je and in_ (Ji) coincide, and that even all their graded Betti numbers coincide if
G is closed. In Proposition 7.25, which is taken from [61], the expected equality of
graded Betti numbers was proved for Cohen—Macaulay closed graphs. Moreover,
for any closed graph it is known that the linear strands of Jg and in- (Jg) have the
same Betti numbers. This is a consequence of the result in [100], mentioned above,
and a result in [128]. The equality of the extremal Betti numbers of J; and in- (Ji)
is proved in [56] for very special cases. The proof is based on results of [186, 219].
Other results supporting these conjectures can be found in [33, 70].

A graph is called Koszul, if for some base field K, the standard graded K-
algebra S/Jg is Koszul. The classification of Koszul graphs is still incomplete.
Theorem 7.47, which asserts that a Koszul graph is chordal and claw free,
is taken from [62]. Proposition 7.49 is due to Rauf and Rinaldo [174], while
Theorem 7.50 which describes the glueing of Koszul graphs is again taken from
[62]. Subsection 7.4.2 reflects the results of [63].

There are several generalizations of binomial edge ideals. One of these general-
izations by Ene, Herzog, Hibi, and Qureshi deals with pairs of graphs [67] which is
an extension of a construction of Rauh [175]. The paper [65] on determinantal facet
ideals by Ene, Herzog, Hibi, and Mohammadi generalizes binomial edge ideals in a
different direction: the binomials corresponding the edges of a graph are replaced by
maximal minors of an m x n-matrix corresponding to the facets of a pure simplicial
complex.

Related to binomial edge ideals are the so-called permanental edge ideals and
Lovasz—Saks—Schrijver ideals. Orthogonal representations of graphs, introduced
by Lovész, are maps from the vertex set of a graph to R¢ where non-adjacent
vertices are sent to orthogonal vectors. The Lovdsz—Saks—Schrijver ideals are the
ideals expressing this condition. The first study of Lz and the geometry of the
variety of orthogonal representations of G can be found in [143]. For that reason
the ideal L of orthogonal graph representations of G is called the Lovdsz-Saks-
Schrijver ideal of G. It is observed in [101] that under certain conditions these
ideals and binomial edge ideals are related via linear transformations. The theory of
permanental edge ideals and Lovasz—Saks—Schrijver ideals has been independently
developed by Herzog, Macchia, Saeedi Madani, and Welker [101] and also by Kahle
and Sarmiento and Windisch [125] for d = 2. Permanental ideals have first been
studied by Laubenbacher and Swanson [138]. For d > 2, Lovadsz—Saks—Schrijver
ideals are investigated in [40].



Chapter 8 ®
Ideals Generated by 2-Minors oy

Abstract In this chapter, we study ideals generated by 2-minors. Classical classes
of ideals of this type are the ideals of 2-minors of an m x n-matrix of indeterminates.
The ideals considered here are generated by certain subsets of 2-minors of such a
matrix. Any of these subsets is defined by a collection € of cells and include 2-
sided ladders. Two types of such ideals are considered: those which are generated
by the 2-minors corresponding to the cells in ¥, called the adjacent minors, and
those which are generated by all inner minors of 4. The Grobner basis of such
ideals will be studied, and it will be discussed when these ideals are prime ideals.
Furthermore, algebraic properties, like normality or Cohen—Macaulayness, of the
algebras defined by these ideals will be considered.

8.1 Configurations of Adjacent 2-Minors

ring over the ﬁeld K in the variables x;;. Let § = [al, ay|by, by] be the 2-minor
with rows ay, ap and columns by, by. The elements (a;, b;) € Zio are called the
vertices and the sets {(ay, by), (a1, b2)}, {(a1, b1), (a2, b1)}, {(a1, b2), (a2, b2)}, and
{(az, b1), (az, b)} the edges of the minor [ay, az2|b1, by], see Figure 8.1. The set of
vertices of § will be denoted by V (6).

The 2-minor § = [ay, az|b1, by] is called adjacent if a = a1+ 1 and b, = by +1.
Let € be any set of adjacent 2-minors of X. We call such a set a configuration of
adjacent 2-minors, and denote by J¢ the ideal generated by the elements of %

Givena = (i, j) and b = (k,]) in Z>0, we writea < bifi <kand j <[ The
set [a, b] = {c € Z>0: a < ¢ < b} is called an interval. An interval of the form
C =[a,a+(1, 1)]iscalled a cell. As can be seen from Figure 8.2, any configuration
of adjacent 2-minors is defined by a collection of cells. This is the perspective that
we will take when we study polyominoes in the next section.

© Springer International Publishing AG, part of Springer Nature 2018 239
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Fig. 8.1 The edges of a by b
2-minor u an, s

Fig. 8.2 A connected
configuration

8.1.1 Prime Configurations of Adjacent 2-Minors

In this subsection, we classify the configurations whose ideals of adjacent 2-minors
are prime ideals.

Proposition 8.1 Let € be a configuration of adjacent 2-minors. Then, the following
holds:

(a) Iy is a lattice basis ideal;
(b) Iy is a prime ideal if and only if all x;; are nonzerodivisors modulo I .

Proof

(a) Let¢;; be the element (¢;, €;) of Z™ x Z" where the ¢;, respectively, €; denote
the canonical basis elements of Z™, respectively, of Z". Then, fori = 1,...,m
and j =1, ..., n, the elements ¢;; form a basis of the free Z-module Z" x Z".
Fori=1,...,m—landj=1,...,n—1,wesetv;j = €j+€i11,j41—€ j+1—
€i+1,j. Then, these elements form the basis % of a lattice L, and the lattice ideal
Iy, is just the ideal I>(X) of 2-minors of the matrix X, cf. Problem 3.13. It is
a classical result that />(X) is a prime ideal (see also Problem 7.9). Therefore,
Theorem 3.17 implies that (Z™ x Z™)/ L is torsionfree. Now, let ' be the subset
of 2 consisting of those v;; for which x;;x; 11, j+1 — i j+1%i+1,; belongsto €.
Then, we see that Iy is equal to the lattice basis ideal 14 .

(b) Let L' C L be the lattice with basis %’. Then, L’ is a direct summand of L.
This implies that (Z™ x Z")/L’ is torsionfree as well. Hence, by Theorem 3.17,
I/ is a prime ideal. Now, we use Corollary 3.22 and deduce that I}, = Iy :
(L X 7)°°. Thus, if all x;; are nonzerodivisors modulo /¢, then I = I/, and
hence Iy is a prime ideal. The converse direction of statement (b) is obvious.

O
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Fig. 8.3 A chessboard
configuration

The set of vertices of %, denoted V (%), is the union of the vertices of its
adjacent 2-minors. Two distinct adjacent 2-minors §, y € € are called connected,
respectively, weakly connected if there exist 81,...,8, € % such that § = §y,
y = &, and such that fori = 1,...,r — 1, § and ;41 have a common edge,
respectively, a common vertex.

A maximal subset ¥ of ¥ with the property that any two minors of & are
connected is called a connected component of €. A configuration € is called
connected, if € has only one connected component. A connected configuration of
adjacent 2-minors is displayed in Figure 8.2

To any configuration of adjacent 2-minors 4, we attach a graph G¢ as follows:
the vertices of G4 are the connected components of €. Let &/ and % be two
connected components of €. Then, there is an edge between <7 and 4 if there exists
aminor § € & and a minor y € % which have exactly one vertex in common. Note
that G may have multiple edges.

A set of adjacent 2-minors is called a chessboard configuration, if any two minors
of this set meet in at most one vertex. An example of a chessboard configuration is
given in Figure 8.3. Anideal I C S is called a chessboard ideal if I = I where € is
a chessboard configuration. Note that the graph G« of a chessboard configuration is
a simple bipartite graph. Indeed, in the case of a chessboard configuration the set of
vertices V of the graph G¢ corresponds to the set of 2-minors of the configuration.
We define the vertex decomposition V. = ViUV, of V by letting V; be the set of
2-minors located in the odd floors, and V), the set of 2-minors located in the even
floors.

Theorem 8.2 Let € be a configuration of adjacent 2-minors. Then, the following
conditions are equivalent:

(i) Iy is a prime ideal.
(ii) € is a chessboard configuration and G has no cycle of length 4.

For the proof of Theorem 8.2, we need the following two lemmata.

Lemma 8.3 Let I be an ideal generated by adjacent 2-minors. For each of the
minors, we mark one of the monomials appearing in the minor as a potential initial
monomial. Then, there exists an ordering of the variables such that the marked
monomials are indeed the initial monomials with respect to the lexicographic order
induced by the given ordering of the variables.
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Proof In general, suppose that, in the set [N] = {1, 2, ..., N}, for each pair (i, i+1)
an ordering either i < i + 1 ori > i + 1 is given. We claim that there is a total
order < on [N] which preserves the given ordering. Working by induction on N, we
may assume that there is a total order i < ... < iy—j on [N — 1] which preserve
the given ordering for the pairs (1,2),...,(N —2,N —1).If N — 1 < N, then
i1 < ... < iny—1 < N is arequired total order < on [N]. If N — 1 > N, then
N <y < ... < iy_1is arequired total order < on [N].

The above fact guarantees the existence of an ordering of the variables such
that the marked monomials are indeed the initial monomials with respect to the
lexicographic order induced by the given ordering of the variables. O

The following example demonstrates the construction of the monomial order
given in the proof of Lemma 8.3.

Example 8.4 In Figure 8.4, each of the squares represents an adjacent 2-minor,
and the diagonal in each of the squares indicates the marked monomial of the
corresponding 2-minor. For a lexicographic order for which the marked monomials
in Figure 8.4 are the initial monomials, the numbering of the variables in the top
row must satisfy the following inequalities:

1<2>3<4>5>6.

By using the general strategy given in the proof of Lemma 8.3, we relabel the top
row of the vertices by the numbers 1 up to 6, and proceed in the same way in the
next rows. The final result can be seen in Figure 8.5

We call a vertex of a 2-minor in ¥ free, if it does not belong to any other 2-minor
of ¢, and we call the 2-minor § = ad — bc free, if either (i) a and d are free or (ii)
b and c are free.

Lemma 8.5 Let € be a chessboard configuration with |€| > 2. Suppose G does
not contain any cycle of length 4. Then, the € contains at least two free 2-minors.

Fig. 8.4 Marked initial 1 2 3 4 5 6
monomials

7 8 9I\l0 11 12

13(\14| 15 16

17 18 19 20

Fig. 8.5 Relabeling of the 4
variables
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Fig. 8.6 A of
ac;jgacent 2—niiel'?(l)lresnce ...... I_ll—’l—dll—’lb—ll—’l_l

Proof We may assume there is at least one nonfree 2-minor in %, say § = ad — bc.
Since we do not have a cycle of length 4, there exists a sequence of 2-minors in
% as indicated in Figure 8.6. Then, the leftmost and the rightmost 2-minor of this
sequence is free. O

Proof (Proof of Theorem 8.2) (i) = (ii): Let §, y € Iy be two adjacent 2-minors
which have an edge in common. Say, § = ae — bd and y = bf — ce. Then,
b(af — cd) € Iy, but neither b nor af — cd belongs to Iy. Therefore, ¥ must
be a chessboard. Suppose G contains a cycle of length 4. Then, there exist in I¢
adjacent two minors 61 = ae — bd, 6o = ej — fi, 83 = hl —ik,and 84 = ch — dg.
Then, h(bcjk — afgl) € I¢, but neither i nor bcjk — afgl belongs to I¢.

(ii)) = (i): By virtue of Proposition 8.1, what we must prove is that all variables
x;j are nonzerodivisors of S/Ix. Let & be the set of generating adjacent 2-minors
of I Fix an arbitrary vertex x;;. We claim that for each of the minors in 4 we may
mark one of the monomials in the support as a potential initial monomial such that
the variable x;; appears in none of the potential initial monomials and that any two
potential initial monomials are relatively prime.

We are going to prove this claim by induction on |¥4|. If || = 1, then the
assertion is obvious. Now assume that |¢| > 2. Then, Lemma 8.5 says that there
exist at least two free adjacent 2-minors in ¢. Let § = ad — bc be one of them and
assume that a and d are free vertices of §. We may assume that x;; # a and x;; # d.
Let ¥’ = ¢\ {8}. By assumption of induction, for each of the minors of ¢’ we may
mark one of the monomials in the support as a potential initial monomial such that
the variable x;; appears in none of the potential initial monomials and that any two
potential initial monomials are relatively prime. Then, these markings together with
the marking ad are the desired markings of the elements of ¢.

According to Lemma 8.3, there exists an ordering of the variables such that
with respect to the lexicographic order induced by this ordering the potential initial
monomials become the initial monomials. Since the initial monomials are relatively
prime, it follows that & is a Grobner basis of Iy, and since x;; does not divide
any initial monomial of an element in ¢ it follows that x;; is a nonzerodivisor of
S/in(l¢), where in(ly) is the initial ideal of I . But then, x;; is a nonzerodivisor
of §/1¢ as well. O
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8.1.2 Configurations of Adjacent 2-Minors with Quadratic
Grobner Basis

The goal of this section is to identify all configurations % of adjacent 2-minors for
which /¢ has a quadratic Grobner basis. To achieve this goal, several preliminary
steps are required.

A configuration ¥ of adjacent 2-minors is called a path, if there exists an ordering
81, ..., 8, of the elements of ¢ such that for all 7,

§jNs; C 8;—1N§; forall j <i, and &_1NJ; 1isanedgeof §;.
Such an ordering is called a path ordering. A vertex of 81 or of §, which does not

belong to any other §; of the path is called an end point of the path.
A path ¥ with path ordering 61, ..., §, where §; = [a;, a; + 1|b;, b; + 1] fori =

1, ..., r is called monotone, if the sequences of integers aj,...,a, and by, ..., b,
are monotone sequences. The monotone path %’ is called decreasing if the sequences
ai,...,ar and by, ..., b, are both increasing or both decreasing, and the monotone

path is called increasing, if one of the sequences is increasing and the other one is
decreasing, see Figure 8.7.

If for ¥ we havea; = ap = --- = a,,or by = by = --- = b,, then we call
% a line path. Notice that a line path is both monotone increasing and monotone
decreasing.

Let 8 = ad — bc be an adjacent 2-minor with a = x;j, b = x;j11, ¢ = xj41;, and
Xi+1j+1. Then, the monomial ad is called the diagonal of 6.

Lemma 8.6 Let € be a monotone increasing (decreasing) path of 2-minors. Then,
for any monomial order < for which Iy has a quadratic Grobner basis, the initial
monomials of the generators are all diagonals (anti-diagonals).

Proof Suppose first that € is a line path. If I, has a quadratic Grobner basis, then
the initial monomials of the 2-minors of ¢ are all diagonals or all anti-diagonals,
because otherwise there would be two 2-minors §; and §; in € connected by an
edge such that in(8;) is a diagonal and in(§>) is an anti-diagonal. The S-polynomial
of §1 and &, is a binomial of degree 3 which belongs to the reduced Grobner basis
of I, a contradiction. If all initial monomials of the 2-minors in € are diagonals,
we interpret 4" as a monotone increasing path, and if all initial monomials of the
2-minors in ¥ are anti-diagonals, we interpret ¢ as a monotone decreasing path.

Fig. 8.7 Monotone paths

decreasing increasing
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Fig. 8.8 Sub-paths of a
monotone path

Fig. 8.9 Forbidden
configurations of 2-minors

Square Pin Saddle

Now, assume that % is not a line path. We may assume that ¢ is monotone
increasing. (The argument for a monotone decreasing path is similar). Then, since €
is not a line path it contains one of the following sub-paths displayed in Figure 8.8.

For both sub-paths, the initial monomials must be diagonals, otherwise I would
not have a quadratic Grobner basis. Then, as in the case of line paths one sees that
all the other initial monomials of 4’ must be diagonals. O

A configuration of adjacent 2-minors which is of the form shown in Figure 8.9,
or which is obtained by rotation from them, is called a square, a pin, and a saddle,
respectively.

Lemma 8.7 Let € be a connected configuration of adjacent 2-minors. Then, € is
a monotone path if and only if € contains neither a square nor a pin nor a saddle.

Proof Assume that € = 81,82,...,8, with §; = [a;,a; + 1|b;, b; + 1] for
i = 1,...,r is a monotone path. Without loss of generality, we may assume that
the both sequences ay, ..., a, and by, ..., b, are monotone increasing. We will
show by induction on r that it contains no square, no pin, and no saddle. For
r = 1, the statement is obvious. Now, let us assume that the assertion is true
for r — 1. Since ¥’ = 81,87, ...,8,_1 is monotone increasing, it follows that
the coordinates of the minors §; for i = 1,...,r — 1 sit inside the rectangle R
with corners (ap, b1), (ar—1 + 1,b1), (a1 + 1,b,—1 + 1), (a1,b,—1 + 1), and
%’ has no square, no pin, and no saddle. Since % is monotone increasing, §, =
lar—1,ar—1 +1|by1+1,b,1 +2]oré = [ar—1+1,ar-1 +2|by—1, b1 +1]. 1t
follows that if 4 would contain a square, a pin, or a saddle, then the coordinates of
one of the minors §;,7 = 1, ...,r — 1 would not be inside the rectangle R.
Conversely, suppose that % contains no square, no pin, and no saddle. Then, ¢’
contains no square, no pin, and no saddle as well. Thus, arguing by induction on
r, we may assume that ¢” is a monotone path. Without loss of generality, we may
even assume thata; <ap <--- <ay,_jand by < by <--- <b,_1. Now, let §, be

connected to §; (via an edge). If i € {2, ..., r — 2}, then ¥ contains a square, a pin,
or a saddle which involves §,, a contradiction. If i = 1 ori = r — 1, and % is not
monotone, then ¢ contains a square or a saddle involving §,. O

Now, we are ready to classify all configurations of adjacent 2-minors for which
I admits a quadratic Grobner basis,
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Fig. 8.10 The initial ¢ I
monomials of two adjacent

2-minors a b . q
c
d e f f g
Fig. 8.11 Two connected
components with the
common corner ¢ c

Theorem 8.8 Let € be a configuration of adjacent 2-minors. Then, the following
conditions are equivalent:

(1) I¢ has a quadratic Grobner basis with respect to the lexicographic order
induced by a suitable order of the variables.
(ii) («a) Each connected component of € is a monotone path.

(B) If o and % are components of € which meet in a vertex which is not an
end point of of or not an end point of 9B, and if </ is monotone increasing,
then 98 must be monotone decreasing, and vice versa.

(i) The initial ideal of I¢ with respect to the lexicographic order induced by a
suitable order of the variables is a complete intersection.

Proof (i) = (ii): (o) Suppose there is component &7 of ¢ which is not a monotone
path. Then, according to Lemma 8.7, .2/ contains a square, a pin, or a saddle. In
all three cases, no matter how we label the vertices of the component 7, it will
contain, up to a rotation or reflection, two adjacent 2-minors with initial monomials
as indicated in Figure 8.10.

In the first case, the S-polynomial of the two minors is abf — bcd and in the
second case it is aef — bcg. We claim that in both cases these binomials belong to
the reduced Grobner basis of I, which contradicts our assumption (a).

Indeed, first observe that the adjacent 2-minors generating the ideal I is the
unique minimal set of binomials generating /4. Therefore, the initial monomials
of degree 2 are exactly the initial monomials of these binomials. Suppose now that
abf — bed does not belong to the reduced Grobner basis of Iy. Then, one of the
monomials ab, af, or bf must be the initial monomial of an adjacent 2-minor, which
is impossible. In the same way, one argues in the second case.

(B) Assume that 7 and % have a vertex ¢ in common. Then, ¢ must be a corner
of o/ and 4, that is, a vertex which belongs to exactly one 2-minor of .27 and exactly
one 2-minor of %, see Figure 8.11.

If for both components of the initial monomials are the diagonals (anti-
diagonals), then the S-polynomial of the 2-minor in .o/ with vertex ¢ and the
2-minor of % with vertex ¢ is a binomial of degree three whose initial monomial is
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Fig. 8.12 Monotone
increasing paths meeting in a

vertex A A

not divisible by any initial monomial of &, unless ¢ is an end point of both <7 and
2. Thus, the desired conclusion follows from Lemma 8.6.

(ii)) = (iii): The condition (b) implies that any pair of initial monomials of two
distinct binomial generators of I are relatively prime. Hence, the initial ideal is a
complete intersection.

(iii) = (i): Since the initial monomial of the 2-minors generating /¢ belong to
any reduced Grobner basis of I, they must form a regular sequence. This implies
that S-polynomials of any two generating 2-minors of I¢ reduce to 0. Therefore, I
has a quadratic Grobner basis. O

Corollary 8.9 Let € be a configuration of adjacent 2-minors satisfying the condi-
tions of Theorem 8.8(ii). Then, Iy is a radical ideal generated by a regular sequence.

Proof Let € = 481, ...,8,. By Theorem 8.8, there exists a monomial order < such
thatin_(81), ..., in () is aregular sequence. It follows that §1, . . ., §, is a regular
sequence. Since the initial monomials are squarefree and form a Grobner basis of
Iy, it follows that I is a radical ideal, cf. proof of Corollary 7.13. O

To demonstrate Theorem 8.8, we consider the following two examples displayed
in Figure 8.12

In both examples, the component </ and the component 2 are monotone
increasing paths. In the first example, ./ and % meet in a vertex which is an end
point of o7, therefore condition (ii)(8) of Theorem 8.8 is satisfied, and the ideal
I7u% has a quadratic Grobner basis. However, in the second example < and %
meet in a vertex which is not an end point of &/ and not an end point of 2.
Therefore, condition (ii)(8) of Theorem 8.8 is not satisfied, and the ideal I,u%
does not have a quadratic Grobner basis for the lexicographic order induced by any
order of the variables.

8.1.3 Minimal Prime Ideals of Convex Configurations of
Adjacent 2-Minors

Let [a1, az2|b1, b2] be a 2-minor. Each of the adjacent 2-minors [a,a + 1]b, b + 1]
with a; < a < ap and by < b < by is called an adjacent 2-minor of [ay, az|b1, b2].
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Fig. 8.13 A convex a b e
configuration

Let ¥ be a configuration of adjacent 2-minors, and let § = [ay, az|b1, by] be a
2-minor whose vertices belong to V (%). Then, § is called an inner minor of €, if
all adjacent 2-minors of § belong to €. The set of inner minors of ¢ will be denoted
by In(%¥) and the ideal they generate by J.

A weakly connected configuration 4" of adjacent 2-minors is called convex, if
each minor [ay, ap|by, by] whose vertices belong to V (%) is an inner minor of ". An
arbitrary configuration ¢ of adjacent 2-minors is called convex, if each of its weakly
connected components is convex. For example, the configurations of adjacent 2-
minors displayed in Figure 8.12 are both convex, while the configuration shown in
Figure 8.2 is not convex.

We want to determine the minimal prime ideals of I when % is a convex
configuration of adjacent 2-minors. For this purpose, we have to introduce some
terminology: let € = 61,682, ..., 8, be an arbitrary configuration of adjacent 2-
minors. A subset W of the vertex set of € is called admissible, if for each §; either
WNV(§;) =@ or WNV (;) contains an edge of §;.

The admissible sets of the convex configuration of 2-minors displayed in
Figure 8.13 are the following:

@,{c,g). {d, h},{a, e i}, (b, f, j}.{a,b,c},....{a,b,c,d,e, f,g h,i,j}

Let W C V(%) be an admissible set. We define the ideal Py (%) as follows: let
¢ = {8 € €: V(O)NW = @}. Then, Py (%) is defined to be generated by the
variables corresponding to W together with the inner 2-minors of %”. Obviously,
Iy C Pw(%). Note that

Py (€) = (W,In(€")) = (W, Jg) = (W, Py(E")).
For the configuration displayed in Figure 8.13, we have

Py(€¢) = (af — be,aj — bi,ej — fi,ag —ce,bg — cf,di —eh,dj — fh),
Puam(€) =(d,h,af —be,aj —bi,ej — fi,ag — ce, bg — cf).

Lemma 8.10 Let € be a convex configuration of adjacent 2-minors, and let W C
V(%) be an admissible set of €, and let €' = {8 € €: V(§)NW = (). Then, ¢’
is again a convex configuration of 2-adjacent minors. Moreover, for any admissible
set W C V(%) the ideal Py (%) is a prime ideal.
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Proof Let " be one of the weakly connected components of 4. Let [ay, a2 |by, b3]
be a minor whose vertices belong to V(%"). We want to show that [a;, az|by, b;]
is an inner minor of %, in other words, that all adjacent 2-minors § = [a,a +
116, b+ 1] of [ay, az|by, by] belong to €. Suppose one of these adjacent 2-minors,
say 8 = [i,i + 1|j, j + 1], does not belong to %”. Then, one of the edges of §
belongs to W, say {x;41,j, Xi+1,j+1). If § does not meet the vertices on the border
lines connecting the corners x4, 4, and x4, p,, and x4, p, and x4, p,, then 8§’ = [i +
1,i +2|j + 1, j + 2] belongs to [a1, az|b1, b2], and hence it belongs to €, since
% is convex. Since V(8')NW # @ and W is an admissible set of &, we see that
either x; 11, j42 € W orxj42 j+1 € W. Proceeding in this way, we see that W meets
a border line of [a1, az|by, b2]. We may assume that x;,, € W for some j with
ag+l<j<a—1.

Now, if the adjacent 2-minor [j, j 4 1|b2, by + 1] € €, then either x4, €
W or xjp4+1 € W. Proceeding in this way, we find a sequence of elements
Xiy,j1s - - +» Xi,, j, which belongs to W with the property that (i) (i1, j1) = (J, b2),
(ii) for all k with 1 < k < r we have (ix+1, jk+1) = (k + 1, jk) of (k+1, Jr+1) =
(i, jx + 1), and (iii) the adjacent 2-minor [i,, i, + 1|j,, j- + 1] does not belong to
% (otherwise the sequence could be extended). Moreover, for 1 < k < r we have
that 8 = [ig, ix + 1ljk, jx + 1] € € and §;NW # @ for all k. By construction,
8r—1 =iy = 1, irljr, jr + 1101 8,—1 = lir, iy + 1]j — 1, j,] belong to €. We may
assume that §,_1 = [i; — 1, i,|jr, j- + 1]. Then, it follows that all the adjacent 2-
minors yx = [k, k+ 1|, j-+ 1] fork =i,,..., m — 1 do not belong to % . Indeed,
if yx € € for some k, then since 8,1 = [i, — 1, i,|jr, j- + 1] belongs to & and since
% is convex, it would follow that [i,, i, + 1| j., j- + 1] belongs to %, a contradiction.
Similarly, there exists xg, s, ..., Xk, ;, Which belongs to W with the property that
(1) (k1,11) = (J, ba), (ii) for all t with 1 <t < s we have (i;41, jr+1) = (@ — 1, jr)
or (iz+1, j+1) = (i, j: — 1), and either the adjacent 2-minors [i; — 1, is|k — 1, k]
do not belong to % fork =1, ..., js, or the adjacent 2-minors [k — 1, k| j; — 1, js]
donot belongto ¢ fork =1, ..., is.

Since the vertices x4, », and x4, , belong to the weakly connected component

%" of %', there exists a chain oy,...,0, of adjacent 2-minors in %’ with
V(oi)NV(0i41) # ¥ for all i and such that x4, 5, € o1 and x4y, € o0y. It
follows that {x;, j, ..., Xi, j,» Xkj,0ys - -+ Xk, ;)07 # ¥ for some i. Therefore,

V(0;)NW # @, a contradiction since o; € 4.
Now, since % is a convex configuration, Corollary 8.23 implies that Py (%) is a
prime ideal. Therefore, Py (%) is a prime ideal as well. O

Theorem 8.11 Let € be a convex configuration of adjacent 2-minors. Let P be a
minimal prime ideal of Iy. Then, there exists an admissible set W C V(%) such
that P = Py (%). In particular,

VI@) = Pw (@),
w

where the intersection is taken over all admissible sets W C V (6).
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Fig. 8.14 A non-convex a__ b
configuration

Proof Let P be any minimal prime ideal of (%), and let W be the set of variables
among the generators of P. We claim that W is admissible. Indeed, suppose that
WNV (8) # @ for some adjacent 2-minor of €. Say, § = ad — bc and a € W. Then,
bc € P. Hence, since P is a prime ideal, it follows that b € P or ¢ € P. Thus, W
contains the edge {a, c} or the edge {a, b} of .

Since I(¥¢) C P, it follows that (W, I(¥)) C P. Observe that (W, I(%)) =
(W, 1(¥")), where WNV(%€') = ¥ and €’ is again a convex configuration; see
Lemma 8.10. Modulo W we obtain a minimal prime ideal P of the ideal 1(%¢")
which contains no variables.

By Corollary 8.23, the ideal Py(¢”) is a prime ideal containing 7 (¢”). Thus, the
assertion of the theorem follows once we have shown that Py (%) C P.

Since Py(%") is generated by the union of the set of 2-minors of certain r x s-
matrices, it suffices to show that if P is a prime ideal having no variables among
its generators and containing all adjacent 2-minors of the » x s-matrix X, then it
contains all 2-minors of X. In order to prove this, let 6 = [aj, a2|b1, by] be an
arbitrary 2-minor of X. We prove that § € P by induction on (ay — aj) + (by — b1).
For (a; — ay) + (b — by) = 2, this is the case by assumption. Now, let (ap —ay) +
(by — b1) > 2. We may assume that ap — a; > 1. Let §1 = [a1,a> — 1|b1, b2]
and 8 = [ap — 1, az|by, ba]. Then, x4, 1 5,8 = Xap, 5,61 + Xay,b,62. Therefore, by
induction hypothesis x4,_1,5,6 € P. Since P is a prime ideal, and x4 x—1,1 € P it
follows that § € P, as desired. O

In general, it seems to be pretty hard to find the primary decomposition for
ideals generated by adjacent 2-minors. For example, the primary decomposition
(computed with the help of Singular [49]) of the ideal I (%) of adjacent 2-minors,
shown in Figure 8.14, is the following:

I1(€) = (ae — bd,ch —dg,ej — fi, hl —ik)
= (ik—hl, fi —ej,dg — ch,bd — ae, bcjk —afglh)N(d, e, h,i).
It turns out that /(%) is a radical ideal. On the other hand, if we add the minor

di — eh, we get a connected configuration 4" of adjacent 2-minors. The ideal (%)
is not radical, because it contains a pin, see Proposition 8.14. Indeed, one has

VI(€') = (ae — bd,ch —dg,ej — fi,hl —ik,di — eh, fghl — chjl,
bfhl — aejl, bchk — achl, bcfh — acej).
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By applying the next theorem, we can determine the minimal prime ideals of
I1(€"). We get

m = (ae —bd,ch —dg,ej — fi,hl —ik,di — eh, fghl — chjl,
bfhl — aejl, bchk — achl, bcfh — acej)
= (—ik+hl,—fi+ej,—ek+dl,—fh+dj, —eh +di, — fg+cj,
—eg +ci, —dg + ch, —bk + al, —bh + ai, —bd + ae)
N (d,e, h,i)N(a,d, h,i, j)N(d, e, f,h,k)N(c,d,e,i,)N(b, e, g, h,i)
N (a,d,h, k,ej — fi)N(c,d,e, f,hl —ik)N(b,e,i,l,ch —dg)
N (g, h,i, j,ae—bd).

The presentation of v/ (%) as an intersection of prime ideals as given in Theo-
rem 8.11 is usually not irredundant. In order to obtain an irredundant intersection,
we have to identify the minimal prime ideals of /(%) among the prime ideals
Py (%).

For any configuration ¢, we denote by 4(%) the set of adjacent 2-minors
generating Py(%).

Theorem 8.12 Let € be a convex configuration of adjacent 2-minors, and let
V,W C V(%) be admissible sets of €, and let Py(%) = (V,9(%")) and
Py(€) = (W,9(€")) where €' = {8 € €: VNV = B} and €’ = {§ €
€: V(S)NW = @}. Then,

(@) Py(€) C Pw(€) ifand only if V.C W, and for all elements
eG4 EHY\NYE"

one has that WNV (§) contains an edge of §.
(b) Py (%) = (W, 9(%")) is a minimal prime ideal of 1(%) if and only if for all
admissible subsets V. C W with Py (%) = (V,9(%")) there exists

s eG4 (EH\YGE")

such that the set WNV (8) does not contain an edge of §.
Proof

(a) Suppose that Py(€) C Pw(%). The only variables in Py (%) are those
belonging to W. This shows that V. C W. The inclusion Py (%) C Pw(%)
implies that § € (W, 4 (%)) for all § € 4(%”). Suppose WNV (§) = @. Then,
3 belongs to Py(€") = (9(€")). Let f = u — v € 4(%"). Neither u nor v
appears in another element of ¢(%"). Therefore, any binomial of degree 2 in
Py(€") belongs to 4 (%"). In particular, § € 4 (%), a contradiction. Therefore,
wWnV(8) £ 0.
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P
H

Fig. 8.15 The admissible sets shown in Figure 8.13

Suppose that WNV (8) does not contain an edge of § = ad — bc. We
may assume that a € WNV(S). Then, since § € Py (%), it follows that
bc € Pw(%). Since Pw (%) is a prime ideal, we conclude that b € Py (%)
or ¢ € Py (%).Then, b € W or ¢ € W and hence either the edge {a, b} or the
edge {a, c} belongs to WNV (§).

The “if” part of statement (a) is obvious.

(b) is a simple consequence of Theorem 8.11 and statement (a). O

In Figure 8.15, we display all the minimal prime ideals of I (Z?) for the path &
shown in Figure 8.13. The fat dots mark the admissible sets and the dark shadowed
areas, the regions where the inner 2-minors have to be taken.

8.1.4 Strongly Connected Configurations Which Are Radical

We call a connected configuration of adjacent 2-minors strongly connected, if the
following condition is satisfied: for any two adjacent 2-minors 81,8, € ¥ which
have exactly one vertex in common, there exists § € ¥ which has a common edge
with §; and a common edge with §.

This section is devoted to study strongly connected configuration of adjacent 2-
minors % for which I (%) is a radical ideal.

We call a configuration % of adjacent 2-minors a cycle, if for each § € % there
exist exactly two 81, 82 € € such that § and §; have a common edge and § and §;
have a common edge.

Lemma 8.13 Let € be a strongly connected configuration which does not contain
a pin. Then, € is a path or a cycle.

Proof If € does not contain a pin, then for each adjacent 2-minor § € € there exist
at most two adjacent 2-minors in ¥ which have a common edge with §. Thus, if
is not a cycle but connected, there exists §1, § € € such that §; has a common edge
only with §;. Now, in the configuration ¢’ = % \ {8} the element §; has at most
one edge in common with another element of ¢”. If §, has no edge in common with
another element of ¢, then ¥ = {81, 8,}. Otherwise, continuing this argument, a
simple induction argument yields the desired conclusion. O

Proposition 8.14 Let € be a strongly connected configuration of adjacent 2-
minors. If 1(€) is a radical ideal, then € is a path or a cycle.

Proof By Lemma 8.13, it is enough to prove that 4" does not contain a pin. Suppose
% contains the pin ¢’ as shown in Figure 8.16.
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Fig. 8.16 A labeled pin b

Fig. 8.17 A pin with k a b i
neighbors

Then, g = acej — befh & 1(€') but g> € 1(€’) C I(%). We consider two
cases. In the first case, suppose that the adjacent 2-minors kd — ac and bf — le do
not belong to ¢, see Figure 8.17.

Then, g & (I(%), W) where W is the set of vertices which do not belong to ¢”. It
follows that g & I(%). In the second case, we may assume that ac—kd € €. Let "
be the configuration with the adjacent 2-minors kd — ac, ae —bd, ch —dg, di — eh.
Then, r = kdi —aeg & 1(€")butr? € 1(€") C 1(¥). Then,r & (I1(€), V) where
V is the set of vertices in ¢ which do not belong to €”. It follows that r &€ I1(%).
Thus, in both cases we see that I (%) is not a radical ideal. |

Problems

8.1 Let & be a path with more than one 2-minor. Find a zerodivisor modulo 7 (%).

8.2 Show that there is no converse to the statement of Proposition 8.14. In other
words, show that there is a cycle configuration € such that I(%) is not a radical
ideal.

8.3 Let ¥ be the configuration of 2-minors whose vertices belong to the interval
[(1, 1), (3, 3)]. Determine the minimal prime ideals of 1 (%) and compute /I (%).

8.2 Polyominoes

Polyominoes are, roughly speaking, plane figures obtained by joining squares of
equal size edge to edge. To explain this more precisely, we first recall the concept of
cells introduced in the previous section. We consider (R?, <) as a partially ordered
set with (x,y) < (z,w) ifandonlyif x < zand y < w. Leta,b € 72. Then,
the set [a,b] = {c € Z* : a < ¢ < b} is called an interval. In what follows,
it is convenient also to define [a, b] to be [b, a] if b < a. Furthermore, we set
[a,b]={x eR?:a <x <b}.
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Fig. 8.18 Polyomino

Leta = (i, j),b = (k1) € 72 with i < k and j < [. Then, the elements a and
b are called diagonal corners, and the elements ¢ = (i, /) and d = (k, j) are called
anti-diagonal corners of [a, b].

A cell is an interval of the form [a, b], where b = a + (1, 1). The cell C =
[a,a 4+ (1, 1)] consists of the elements a,a + (0,1),a + (1,0), and a + (1, 1),
which are called the vertices of C. We denote the set of vertices of C by V(C).
The intervals [a,a + (1,0)], [a + (1,0),a + (1, 1)], [a + (0, 1),a + (1, 1)], and
[a, a + (0, 1)] are called the edges of C. Each edge consists of two elements, called
the corners of the edge.

We now consider a finite collection of cells & in Z2. Let C and D be two cells
of #. Then, C and D are said to be connected, if there is a sequence of cells € =
Ci,...,Cp =Dof Zsuchthat C; N C;4q isanedgeof C; fori =1,...,m — 1.
If, in addition, C; # C; forall i # j, then ¢ is called a path (connecting C and D).
The collection of cells & is called a polyomino if any two cells of & are connected,
see Figure 8.18. The set V() = (Jccp V(C) is called the set of vertices of Z.

Let 2 be an arbitrary collection of cells. Then, each connected component of 2
is a polyomino.

Let & be a polyomino, and let K be a field. We denote by S the polynomial ring
over K with variables x;; where (i, j) € V(). A 2-minor x;jxy — XyXxkj € S is
called an inner minor of &2 if all the cells [(r,s), (r +1,s + )] withi <r <k—1
and j < s <[ — 1 belong to Z. In that case, the interval [(i, j), (k,1)] is called
an inner interval of &. The ideal I C S generated by all the inner minors of &
is called the polyomino ideal of &2. We also set K[Z?] = S/I%, and call it the
coordinate ring of &.

8.2.1 Balanced Polyominoes

Among the polyominoes, the balanced polyominoes admit coordinate rings with
many nice properties. An interval [a, b] witha = (i, j) and b = (k,[) is called a
horizontal edge interval of & if j = [ and the sets {r,r + 1} forr =i,...,k — 1
are edges of cells of &. Similarly, one defines vertical edge intervals of 2.

An integer value function «: V(£?) — Z is called admissible, if for all maximal
horizontal or vertical edge intervals .# of &2 one has



8.2 Polyominoes 255

Fig. 8.19 An admissible -3 5 -2
labeling
2 —2 10
-1 1 —4 4
_9 0 3 0 ~1
3 011
0 -2
-2 2

Z(x(a) =0.

aed

In Figure 8.19, an admissible labeling of the polyomino is shown. Given an
admissible labeling o, we define the binomial

fu= l_[ xz‘(“)— 1_[ xa—a(a).

aeV(2) aeV(Z)
a(a)=>0 a(a)<0

Let J» be the ideal generated by the binomials f, where « is an admissible
labeling of &. It is obvious that /> C Jg. We call a polyomino balanced if for
any admissible labeling o, the binomial f, € Ig. This is the case if and only if
lop = Jp.

Consider the free abelian group G = @; ey () Ze,j) With basis elements
ei,jy. Toany cell C = [(i, j), (i + 1, j 4+ 1)] of & we attach the element bc =
e, j)tei+1,j+1) —ei+1,j) — e, j+1) in G and let A C G be the lattice spanned by
these elements.

Lemma 8.15 The elements bc form a K -basis of A and hence ranky A = |Z|.
Moreover, A is saturated. In other words, G /A is torsionfree.

Proof We order the basis elements e(; ;) lexicographically. Then, the initial basis
element of bc is e, j). This shows that the elements b¢ are linearly independent
and hence form a Z-basis of A. We may complete this basis of A by the elements
e(;,j for which (i, j) is not a lower-left corner of a cell of & to obtain a basis of G.
This shows that G/ A is free, and hence torsionfree. m]

The lattice ideal I, attached to the lattice A is the ideal generated by all
binomials

_ || v, || —,
fv— xaa_ xaa

aeV () aeV(2)
vg >0 vg <0
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with v = ZueV(@) Vgeq € A.
Proposition 8.16 Ler & be a balanced polyomino. Then, [ = 4.

Proof The assertion follows once we have shown that for any v € A there exists an
admissible labeling o of &2 such that v, = a(a) for all a € V(Z?). Indeed, since
the elements bc € A form a Z-basis of A, there exist integers z¢c € Z such that
v=7 czcbc. Weseta =) .z zcac where for C = [(i, j), (i + 1, j + D],

1, ifk,D)=(, j)ork,)=G+1,j+1),
ac(k, )y =1 —1,if (k, ) =G+ 1,j)or k,[) =(,j+ 1),
0, otherwise.

Then, a(a) = v, for all a € V(Z?). Since each ac is an admissible labeling of
& and since any linear combination of admissible labelings is again an admissible
labeling, the desired result follows. O

Corollary 8.17 If & is a balanced polyomino, then 1 is a prime ideal of height
| 2.

Proof By Proposition 8.16, I » = I, and by Lemma 8.15, A is saturated. It follows
that /4 is a prime ideal, see Theorem 3.17. Next, it follows from Proposition 3.1
(see also Problem 3.12) that height /s> = rankyz A. Hence, the desired conclusion
regarding height / » follows from Lemma 8.15. O

Next, for any balanced polyomino &, we will identify the primitive binomials in
I . This will allow us to show that the initial ideal of /4 is a squarefree monomial
ideal for any monomial order.

The primitive binomials in & are determined by cycles. A sequence of vertices
€ =ai,ay,...,ayin V() with a,, = a; and such that g; # a; forall 1 <i <
J <m — lisacalled acycle in & if the following conditions hold:

(1) [ai, a;j+1] is a horizontal or vertical edge interval of &2 foralli =1, ..., m—1;
(i) fori = 1,...,m, one has: if [a;, a;+1] is a horizontal interval of &2, then
[@i+1, aiy2] is a vertical edge interval of &2 and vice versa. Here, a,,+1 = a».

It follows immediately from the definition of a cycle that m — 1 is even. Given a
cycle €, we attach to € the binomial

(m—1)/2 (m—1)/2

fe = l—[ Xayi_y — l—[ Xay;
i=1 i=1

Theorem 8.18 Let &2 be a balanced polyomino.

(a) Let € be acyclein &. Then, fy € 5.
(b) Let f € I be a primitive binomial. Then, there exists a cycle € in & such that
each maximal interval of &7 contains at most two vertices of € and f = =+ fe.
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Proof

(a) Let¥ =ay,an, ..., anbeacyclein &. We define a labeling « of & by setting
a(@) =0ifa ¢ € and a(a;) = (—1)'T! fori = 1, ..., m, and claim that «
is an admissible labeling of Z. To see this, we consider a maximal horizontal
edge interval I of . If ING = @, then a(a) = O for all @ € I. On the other
hand, if IN% # (@, then there exist integers i such that a;, a;+; € I (where
ajy+1 = ay if i = m — 1), and no other vertex of I belongs to . It follows that
Y ac; @(a) = 0. Similarly, we see that ) ,.; a(a) = 0 for any vertical edge
interval. It follows form the definition of « that fiz = f,,, and hence since & is
balanced it follows that f € 5.

(b) Let f € I be a primitive binomial. Since &7 is balanced and f is irreducible,
there exists an admissible labeling « of &2 such that

f=to= ] =@ - [T .

aeV(2) aeV(P)
a(a)>0 a(a)<0

Choose a; € V() such that a(ay) > 0. Let I; be the maximal horizontal
edge interval with a; € I;. Since « is admissible, there exists some a> € I
with a(az) < 0. Let I, be the maximal vertical edge interval containing as.
Then, similarly as before, there exists a3 € I with @(a3) > 0. In the next step,
we consider the maximal horizontal edge interval containing a3 and proceed as
before. Continuing in this way, we obtain a sequence ay, az, as, ..., of vertices
of & such that a(ay), a(az), a(az), ... is a sequence with alternating signs.
Since V(&) is a finite set, there exists a number m such that a; # a; for all
1 <i < j<manda, = a; for somei < m. It follows that «(a,;,) = «a(a;)
which implies that m — i is even. Then, the sequence ¢ = a;, a;+1,...ap is a
cycle in £, and hence by (a), fy € 2.

For any binomial g = u — v we set g™ = u and g™ = v. Now, if i is odd, then
fEP divides £ and £57 divides £, while if i is even, then £ divides £
and ffg_) divides fV). Since f is primitive, we see that f = =+ fo, as desired. O

Corollary 8.19 Let &2 be a balanced polyomino. Then, for any monomial order,
the ideal 1 5 admits a squarefree initial ideal.

Proof By Corollary 8.17, I is a prime ideal. This implies that /4 is a toric
ideal, see Theorem 3.4. Now, we use the fact, shown in Theorem 3.13, that the
reduced Grobner basis of a toric ideal with respect to any monomial order consists
of primitive binomials. Since by Theorem 8.18, the primitive binomials of /4 have
squarefree initial terms for any monomial order, the desired conclusion follows. O

The preceding corollary has nice consequences.

Corollary 8.20 Let &2 be a balanced polyomino. Then, K[ £?] is a normal Cohen—
Macaulay domain of dimension |V ()| — | 2|.
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Fig. 8.20 A simple
polyomino

Proof A toric ring whose toric ideal admits a squarefree initial ideal is normal, see
Corollary 4.26. By a theorem of Hochster [27, Theorem 6.3.5], a normal toric ring is
Cohen—Macaulay. Thus, the first part of the assertion follows from Corollary 8.19.
The second part is a consequence of Corollary 8.17. O

8.2.2 Simple Polyominoes

In this section, we introduce simple polyominoes. Roughly speaking these are the
polyominoes without holes. As a main result, we will show that the coordinate ring
of a simple polyomino is a domain.

A polyomino &7 is called simple, if for any two cells C and D with vertices in
72 which do not belong to 2, there exists apath ¢ : C = C,Cs,...,C; = D
with C; ¢ & foralli = 1,...,t. For example, the polyomino which is shown in
Figure 8.18 is not simple, while Figure 8.20 shows a simple polyomino.

The purpose of this section is to prove the following:

Theorem 8.21 A polyomino is simple if and only if it is balanced.
Combining this result with Corollary 8.17 we obtain:
Corollary 8.22 Let & be a simple polyomino. Then, I 2 is a prime ideal.

The following result is an important special case of this corollary: let C and D
be two cells with lower-left corners (i, j) and (k, [). Then, the cell interval, denoted
by [C, D], is the set of cells

[C,D]={E: E € Zéo with lower-left corner (r, s), fori <r <k,j <s <I}

If (i, j) and (k, I) are in horizontal position, then the cell interval [A, B] is called a
horizontal cell interval. Similarly, one defines a vertical cell interval.

A polyomino &7 is called row convex, if the horizontal cell interval [C, D] is
contained in & for any two cells C and D of & whose lower-left corners are
in horizontal position. Similarly, one defines column convex. A collection of cells
& is called convex, if it is row and column convex. Figure 8.20 displays a simple
polyomino which is row convex but not column convex.
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For the proof of the next result, it suffices to notice that convex polyominoes are
simple.

Corollary 8.23 Let &2 be a convex polyomino. Then, [ 5 is a prime ideal.

The proof of Theorem 8.21 requires some preparation. Let &2 be a polyomino.
There exists an interval I = [a, b] with V(&) C I. Let 5 be the collection of
cells C with the property that C ¢ £2. The connected components of 77 with
the property that the vertices of all its cells belong to I are called the holes of 2.
For example, the polyomino which is shown in Figure 8.18 has exactly one hole
consisting of just one cell. Note that this definition does not depend on the particular
choice of 1. &7 is simple if and only if it is hole free. Each hole of &7 is a polyomino.
In fact, one even has:

Lemma 8.24 Each hole of a polyomino is a simple polyomino.

Proof We use the notation just introduced. Let &2’ be a hole of the polyomino 42,
and assume that &’ is not simple. Let &” be a hole of &?’. Then, &?” is again a
polyomino, and &’ as well as &?” belong to I. Let C be a cell of &?” which shares
an edge witha cell D € £?’. Suppose C ¢ &2, then C € &' because C is connected
to D, and £?’ is a connected component of .5Z. This is a contradiction, and hence
C € Z. Let 2 the connected component of .77 whose cells do not all belong to 1.
Let E be a cell of &2 which has an edge in common with a cell F of 2 and which
belongs to the same connected component of &2 as C. Furthermore, let G be a cell
in 2 which does not belong to I. Then, there is a path of cells C, ..., E for which
all cells belong to 2, and a path of cells F, ..., G for which all cells belong to 2.
Composing these two paths, we obtain a path C, ..., G for which no cell belongs
to &’. This contradicts the fact that &2” is a hole of &', o

The polyomino in Figure 8.18 has two cells intersecting at only one vertex which
does not belong to any other cell. This cannot happen if the polyomino is simple.
Indeed, we have:

Lemma 8.25 Let & be a simple polyomino. Then, there does not exist any vertex
v which belongs to exactly two cells C and C' of & such that CNC’ = {v}.

Proof Suppose on the contrary that there exists such a vertex v. According to
Figure 8.21, the only cells of &2 which contain v could be the four cells C, C’,
D, and D’. By our assumption, we may assume that C and C’ belong to &2 and D
and D’ do not belong to &. Since &2 is a polyomino, there exists a path of cells
of & connecting C and C’. Thus, either D or D’ is contained in a hole of Z2. It
contradicts the fact that & is a simple polyomino. O

Let & be a polyomino. We recall from Section 8.2.1 that an interval [a, b] with
a = (i, j) and b = (k, j) is called a horizontal edge interval of &2, if the intervals
[, j), ¢+ 1, j)]fort =i,...,k—1are edges of cells of &. Similarly, a vertical
edge interval of &7 is defined to be an interval [a, b] witha = (i, j) and b = (i, ])
such that the intervals [(Z, t), (i, + 1)] fort = j, ..., — 1 are edges of cells of &.
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Fig. 8.21 Two cells C and :__ B
C’ belong to & D c
v,
fe D
——d
Fig. 8.22 The vertex v is not d d
a common endpoint of / and
]/
a b a b

o

We call an edge of a cell C of & a border edge, if it is not an edge of any
other cell, and define the border of & to be the union of all border edges of Z.
A horizontal border edge interval of & is defined to be a horizontal edge interval
of & whose edges are border edges. Similarly, we define a vertical border edge
interval of 2.

Corollary 8.26 Let & be a simple polyomino and let I and I' be two distinct
maximal border edge intervals of &2 with INI' # (. Then, their intersection is
a common endpoint of I and I'. Furthermore, at most two maximal border edge
intervals of &2 have a nontrivial intersection.

Proof Let I = [a,b] and I’ = [c, d]. The edge intervals I and I’ are not both
horizontal or vertical edge intervals, since otherwise their maximality implies that
they are disjoint. Suppose that I is a horizontal edge interval and I’ is a vertical
edge interval. So, obviously, they intersect in one vertex, say v. Suppose that v is
not an endpoint of I or I’. If v is an endpoint of just one of them, then without loss
of generality, we may assume that we are in the case which is shown on the left-
hand side of Figure 8.22. Thus, since I and I’ are maximal border edge intervals,
it follows that among the four possible cells of Z? which contain v, exactly one of
them belongs to &, which is a contradiction. If v is not an endpoint of any of I and
I, then we are in the case which is displayed on the right-hand side of Figure 8.22.
Among four possible cells of Z> which contain v, only a pair of them, say C and
C’, with CNC’" = {v}, belong to 2, since the edges of I and I’ are all border edges.
But, by Lemma 8.25, this is impossible, since &2 is simple. Thus, v has to be a
common endpoint of 7 and I’.

Now, suppose more than two maximal border edge intervals have a nontrivial
intersection. Then, this intersection is a common endpoint of these intervals. Thus,
at least two of these intervals are either horizontal or vertical, contradicting the fact
that they are all maximal. O

Next, we introduce some concepts and facts about rectilinear polygons which
are used in the study of simple polyominoes. A rectilinear polygon is a polygon
whose edges meet orthogonally. It is easily seen that the number of edges of
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Fig. 8.23 A rectilinear
polygon

Fig. 8.24 The interval [a, b] d
and acell C

a rectilinear polygon is even. Note that rectilinear polygons are also known as
orthogonal polygons. A rectilinear polygon is shown in Figure 8.23.

A rectilinear polygon is called simple if it does not self-intersect. The rectilinear
polygon in Figure 8.23 is a simple rectilinear polygon.

Let R be a simple rectilinear polygon. The bounded area whose border is R is
called the interior of R. By the open interior of R, we mean the interior of R without
its boundary.

A simple rectilinear polygon has two types of corners: the corners in which the
smaller angle (90 degrees) is interior to the polygon are called convex corners, and
the corners in which the larger angle (270 degrees) is interior to the polygon are
called concave corners.

Let Ey, ..., E, be the border edges of &. Then, we set B(Z) = Ul’-"zl E;.
Observe that the border of & as defined before is the set of lattice points which
belong to B(Z?).

Lemma 8.27 Let & be a simple polyomino. Then, B(Z) is a simple rectilinear
polygon.

Proof First, we show that for each maximal horizontal (resp., vertical) border edge
interval I = [a, b] of &2, there exists a unique maximal vertical (resp., horizontal)
border edge interval I’ such that a is an endpoint of it. By Corollary 8.26, the vertex
a is then the endpoint of precisely I and I’. Without loss of generality, let I = [a, b]
be a horizontal maximal border edge interval of &2. Let C be the only cell of & for
which a is a vertex, and which has a border edge contained in /. First, we assume
that a is a diagonal corner of C which implies that C is upside of /, see Figure 8.24.
The argument of the other case in which «a is an anti-diagonal corner of C, and hence
C is downside of I, is similar.

Referring to Figure 8.24, we distinguish two cases: either the unique cell D,
different from C sharing the edge [a, d] with C, belongs to &7 or not.

Let us first assume that D ¢ 2. Then, [a, d] is a border edge of &, and hence
it is contained in a maximal vertical border edge interval I’ of &7 such that by
Corollary 8.26, a is an endpoint of I’. Hence, I’ is the unique maximal vertical
border edge interval of & for which a is an endpoint.
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Fig. 8.25 The intervals [a, c] d
and [ f, a] are two border D|C J
edges cle e b

Next, assume that D € £2. Then, the cell C’ belongs to & (see Figure 8.25),
because [a, b] is a maximal horizontal border edge interval, so that [e, a] cannot
be a border edge. The edge [ f, a] is a border edge, since otherwise there is a cell
containing both of the edges [ f, @] and [a, c], contradicting the fact that [a, c] is a
border edge. Therefore, there exists the unique maximal vertical border edge interval
I’ which contains [ f, a] such that a is an endpoint of I’.

The same argument can be applied for b to show that b is also just the endpoint
of I and of a unique maximal vertical border edge interval I’ of 2.

Now, let /; be a maximal horizontal border edge interval of &’. By what we
have shown before, there exists a unique sequence of maximal border edge intervals
LI, I, ...of & with I; = [a;, a;+1] such that they are alternatively horizontal and
vertical. Since V(&) is finite, there exists a smallest integer r such that for some
i <r—1,1; N1, # . Since I; and I, are distinct maximal border edge intervals of
Z, they intersect in one of their endpoints, by Corollary 8.26. Thus, I; N I, = {a;},
since r # i and by Corollary 8.26, @;4| cannot be a common vertex between three
maximal border edge intervals [;, I;+, and I,. It follows that i = 1, since otherwise
a; also belong to I;_; which is a contradiction, by Corollary 8.26.

Our discussion shows that R = U;: 1 f j is a simple rectilinear polygon. Suppose
that R # B(4?). Then, there exists a maximal border edge interval 1 { which is
different from the intervals ;. As we did for I, we may start with / { to construct
a sequence of border edge intervals I’ to obtain a simple rectilinear polygon R’
whose edges are formed by some maximal border edge intervals of . We claim
that RNR" = ¢J. Suppose this is not the case, then I;NI; # @ for some j and k,
and hence by Corollary 8.26 these two intervals meet at a common endpoint. Thus,
it follows that /; also has a common intersection with one of the neighbor intervals
I; of I;, contradicting the fact that no three maximal border edge intervals intersect
nontrivially, see Corollary 8.26. Hence, RNR’ = @, as we claimed.

All the cells of the interior of R must belong to &2, because otherwise & is
not simple. It follows that R’ does not belong to the interior of R, and vice versa.
Thus, the interior cells of R and R’ form two disjoint sets of cells of &2. Since &
is a polyomino, there exists a path of cells connecting the interior cells of R with
those of R’. The edges where this path meets R and R’ cannot be border edges, a
contradiction. Thus, we conclude that R = B(%?). |

For the proof of the main theorem of this section (Theorem 8.21), special
admissible labelings of polyominoes are required.

An inner interval I of a polyomino &7 is an interval with the property that all
cells inside 7 belong to Z.

Let I be an inner interval of a polyomino &2. Then, we introduce the admissible
labeling oy : V(&) — Z of & as follows:
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Fig. 8.26 A border labeling 1 0 1

—1, if a is a diagonal corner of 1,
aj(a) = {1, ifaisan anti-diagonal corner of /,
0, otherwise.

Next, we introduce a special labeling of a simple polyomino &2, called a
border labeling. By Lemma 8.27, B(Z?) is a rectilinear polygon. While walking
counterclockwise around B(Z?), we label the corners alternatively by +1 and —1
and label all the other vertices of &2 by 0. Since B(Z?) has even number of
vertices, this labeling is always possible for &2. Also, it is obvious that every simple
polyomino has exactly two border labelings. Figure 8.26 shows a border labeling of
the polyomino which was displayed in Figure 8.20.

Lemma 8.28 A border labeling of a simple polyomino is admissible.

Proof Let & be a simple polyomino, and let o be a border labeling of 2. Let
I be a maximal horizontal edge interval of &?. We show that ), _; a(a) = 0.
Let Iy, ..., I; be all maximal horizontal border edge intervals of &2 which are
contained in /. Note that the intervals /; are pairwise disjoint. Then, ) ,.; a(a) =
> aer; a(a), since the only elements of / for which a(a) # 0 are the corners of

1<i<t
the rectilinear polygon B(Z?), and since the endpoints of I, ..., I; are corners of
B(Z). But, Y «er; a(a) = 0, since by definition of a border labeling, we have

1<i<t
Zae I a(a) = 0, for each i = 1,...,¢. Similarly, for a maximal vertical edge
interval I of &2, we have Za€1 o (a) = 0. Hence, « is admissible. m|

Now, let & be a polyomino contained in the rectangular polyomino .# with

V(&) = [(1,1), (m,n)] for some positive integers m and n. Let I be an inner
interval of &2, and set u; = (ugl’j)) 1<i<m € Z"™*" where
I<j=n

o —1, if (i, j) is a diagonal corner of I,
u([”) =11, if (i, j) is an anti-diagonal corner of /,
0, otherwise.
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Note that if 7 is just a cell C of &2, then with the notation of Lemma 8.15,u; = bc¢.
There, it is also shown that the elements bc with C € . are linearly independent
over Z.

We set

M () = {u : u = tuy for some inner interval I of &}.

In the next proposition, which provides a new characterization of balanced polyomi-
noes, we refer to the connectedness of vectors via .# (4?). We refer the reader to
Corollary 3.10 and the definitions preceding it.

Proposition 8.29 Let & be a polyomino. Then, the following conditions are
equivalent:

1) Z is balanced;
(ii) For each admissible labeling a of &, at and a~ are connected via M (P);
(iii) For each admissible labeling o of &, there exist uy, ..., 0 € M () such
thato™ +uy+---+w; € 22 foralli = 1,....t,and ™ = a” +uy+---+u,.

Proof The conditions (ii) and (iii) are equivalent by the definition of G_z (). We
show that (i) and (ii) are equivalent. Let @ be an admissible labeling of &2. Then,
fo = ¢ x¢ ¢ I (. (2?)) if and only if a and o~ are connected via .# ().
But, note that I = I(#(Z)). So, fy € Iy if and only if «t and o~ are
connected via .Z (). Thus, the assertion follows, since &7 is balanced if and only
iflp = Jp. O

Now, we are ready for the proof of the main result of this section.

Proof (of Theorem 8.21) Let & be a polyomino. First, suppose & is simple. We
have to show that for any admissible labeling « of & we have that f, € 14, and we
show this by induction on deg f,,. Suppose deg f, = 2. Then, @ = o  for some
inner interval I, because &2 is simple. Thus, by definition f, € /4.

Now, suppose that deg f, > 2. We choose ag € V(<) with a(ap) > 0. Since «
is admissible, there exists a horizontal edge interval [ag, ;] of &2 with a(a;) < 0.
By using again that « is admissible, there exists a vertical edge interval [ay, a>] of
& with a(az) > 0. Proceeding in this way, we obtain a sequence of edge intervals

of £,

lao, a1l, [a1, a2], [az, a3], . ..

which are alternatively horizontal and vertical and such that sign(x(a;)) = (=)
for all i.

Since V() is a finite set, there exists a smallest integer r such that [a,, a,41]
intersects [a;, aj11] for some j < r — 1. We may assume that j = 0. If [a,, a,41]
is a vertical interval, then [a,, a,4+1] and [ap, a1] intersect in precisely one vertex,
which we call a. If [a,, a;+1] is horizontal, then we let a = ay. In this way, we
obtain a simple rectilinear polygon R whose edges are edge intervals of &7 with
corner sequence a, di, dy, . .., dr—1, a if [a,, a,4+1] is vertical and corner sequence
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Fig. 8.27 A good corner and iy a;
its rectangle

b e e —— i1
Fig. 8.28 R intersects the
rectangle
a,a,as, ...,ar—1,a if [a,, ar4+1] is horizontal. Moreover, we have sign(a(a;)) =

(—1)! for all i. The cells in the interior of R all belong to & because & is simple.
We may assume that the orientation of R given by the order of the corner sequence
is counterclockwise. Then, with respect to this orientation the interior of R meets R
on the left-hand side, see Figure 8.23.

We call a convex corner ¢ of R good if the rectangle which is spanned by ¢ and
its neighbor corners is in the interior of R. We claim that R has at least four good
corners. We will prove the claim later and first discuss its consequences. Since R
has at least four good corners, there is at least one good corner ¢ such that ¢ and its
neighbor corners are all different from a. Let I be the rectangle in the interior of R
spanned by ¢ and its neighbor corners. Without loss of generality, we may assume
that this corner looks like the one displayed in Figure 8.27 with ¢ = a;.

Since all cells in the interior of I belong to the interior of R and since all
those cells belong to &, it follows that f,, € Is. Without loss of generality,
we may assume that a(q;) < 0, and hence a(a;—1), ®(aj+1) > 0. Then, the
homogeneous binomial g = f, — (x*" /Xa;_1Xa;,,) fo; has the same degree as
fo and belongs to Jo, since f, and fy, belong to Jg. Furthermore, g = x4 h,
where h = xb(x"‘+ [Xa;_y Xaiy) — X /xg,. It follows that h € J, since x4, ¢ J»
and since Jg is a prime ideal. Since Jo is generated by the binomials fg with
B an admissible labeling of &, there exist fg, € Jp such that h = Y ;_, 1 fg,
where deg fg, < degh and r; € S for all /. Since degh < deg f,, we also have
deg fp, < deg fy for all /. Thus, our induction hypothesis implies that fg, € 14 for
all /. It follows that h € I, and hence fy € [, since f,, € 1 5.

In order to complete the proof that &2 is balanced, it remains to prove that indeed
any rectilinear polygon R has at least four good convex corners. We prove this by
defining an injective map y which assigns to each convex corner of R which is not
good a concave corner of R. Since, as is well known and easily seen, for any simple
rectilinear polygon the number of convex corners is four more than the number of
concave corners, it will follow that there are at least four good corners.

The map y is defined as follows: let ¢ be a convex corner of R which is not good.
Then, the polygon R crosses the open interior of the rectangle which is spanned by
c and the neighbor corners of c. The gray area in Figure 8.28 belongs to the interior
of R.
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Fig. 8.29 L, defines y(c)

Now, we let L be the angle bisector of the 90 degrees angle centered in c. Next,
we consider the set .Z,. of all lines perpendicular to L. The unique line in %, which
intersects L in the point p and such that the distance from c to p is ¢, will be denoted
by L;. There is a smallest number fy such that L;, has a nontrivial intersection with
R in the open interior of the rectangle. This intersection with L, consists of at least
one and at most finitely many concave corners of R, see Figure 8.29.

We define y to assign to ¢ one of these concave corners. The map y is injective.
Indeed, if d is another convex corner of R with y(d) = y(c), then the line in
%, which hits y(c) must be identical with L,,, and this implies that d lies in the
intersection of the rectangle with the linear half space defined by L, containing c.
But, in this area there is no other corner of R which is not good. Hence, d = c.

Conversely, suppose now that & is balanced and assume that & is not simple.
Let 22’ be a hole of £2. Then, by Lemma 8.24, &2’ is a simple polyomino. Let « be a
border labeling of 4?’. We consider the labeling 8 of &2 which for each a € V()
is defined as follows:

ala)if a e V(H),
pla) = {0 if ag¢ V().
Then, B is an admissible labeling of &2, by a similar argument as in the proof of
Lemma 8.28. Indeed, let I be a maximal horizontal (vertical) edge interval of &?
and let . be the set of all horizontal (vertical) border edge intervals of %2’ such
that I; N1 # P. If & = ¢, then B(a) = Oforalla € I.If .Y # @ and
I; € 7, then I; C I. Since the intervals /; are disjoint, we have ) _; B(a) =
Y aet; Bla) = ) aer; a(a). Hence, ) ,.; B(a) = 0, because by definition of «,

I ey I ey
we have Zaelj a(a) =0forallI; € .7.

Note that we may consider @ and 8 as vectors in Z"*" where m and n are positive
integers with V(£) C [(1, 1), (m, n)]. Since &2 is a balanced polyomino, it follows
that there exist uy,...,u; € #(Z) such that B* = g~ +u; + --- + u,, by
Proposition 8.29. On the other hand, since 22’ is a simple polyomino, it follows
from the first part of the proof that £’ is also balanced. Thus, by Proposition 8.29

there exist uj, ..., u; € .#(Z') such that ™ = o~ +u| + --- + uj, since « is
admissible by Lemma 8.28. Note that by the construction of the labeling g, it is
clear that B = o™ and B~ = ™ are vectors in Z"™*". So, we have uj +- - - +u, =

u|+---+u.Foreachi =1,...,¢,wehavew; = +uy, and foreach j =1,...,/,
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we have u/j =z+u 1 where [; and [ J’ are inner intervals of & and &7, respectively.
So, it follows that for each i, j, u;, and u’i are linear combination of the b¢’s and
b¢r’s, respectively, where C stands for cells of Z and C’ stands for cells of &'. But,
the bc’s and b¢r’s are linearly independent, so thatu; +- - -4+u; = u’l +-- ~—|—u; =0,
which is a contradiction, since obviously we have 8 # B~. Therefore, & is a
simple polyomino. O

8.2.3 A Toric Presentation of Simple Polyominoes

Let & be a polyomino. In this section, we will identify K[Z?] as the edge ring of a
suitable graph if & is simple. This will then yield another proof of the fact, shown
in the previous section, that K [#] is a domain.

Let {Vy, ..., V,,} be the set of maximal vertical edge intervals and {H{, ..., H,}
be the set of maximal horizontal edge intervals of &?. We denote by G(&?), the
associated bipartite graph of &, whose vertex set is {vy, ..., v} | |{A1, ..., hn}

and whose edge set defined as follows:
EG(2) ={{vi,hj} | ViN Hj € V(2)}.
Example 8.30 Figure 8.30 shows a polyomino & with maximal vertical and

maximal horizontal edge intervals labeled as {Vi,..., Vu} and {Hy,..., Ha},
respectively, and Figure 8.31 shows the associated bipartite graph G (£?) of £2.

Fig. 8.30 Maximal intervals H,
of &
Vi Vi
Hy
Ve Vs
’ Hy
H,
Fig. 8.31 The associate 2 v, V3 A Vs
bipartite graph of &

I h, h, ha
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Given acycle €% : ay, az, ..., ay, of 2, wecall {ay, a, ..., a,} the vertex set
of €p, and denote this set by V (%p). As before, in Section 8.2.1, we attach to the
cycle €p the binomial

(m—1)/2 (m—1)/2

fe, = 1_[ Xagi—y — 1_[ Xay;
i=1 i=1

The cycle €p is called primitive, if each maximal interval of &7 contains at most
two vertices of €p.
Note that € : v;,, hj,, viy, hj,, ..., V;,, hj, defines a cycle in G(&), if and only

if the sequence of vertices €' : VinH;,V,NNH;,Vi,NHj,, ..., Vi, NHj , VN
Hj, is a primitive cycle in &.
Let K[G(P)] = Klvphy | {p.q} € E(G(Z)] C T = Klvi,...,vm, h,

..., hy,] be the edge ring of G(&?), and let S be the polynomial ring over K with
variables x;; with (i, j) € V(Z?). We define a K -algebra homomorphism ¢ : § —
T with image K[G ()] by ¢(x;;) = v,hy, where p and g are uniquely determined
by the identity {(i, j)} = V,NH,. We denote by L 4 the toric ideal of K[G(Z?)]. By
Corollary 5.12, L » is generated by the binomials associated with cycles in G ().

Theorem 8.31 Let & be a simple polyomino. Then, [ = L . In other words,
K[Z=K[G(DP2)].

For the proof of the theorem, we need a lemma. We recall from graph theory
that a graph is called weakly chordal if every cycle of length greater than 4 has a
chord. We say that a cycle €% : aj,ap,...,a, in & with a,, = a; has a self-
crossing, if there exist indices i and j such that a;,a;11 € Vi and aj,aj1 € H;
and a;, aj41, aj, aj4q are all distinct and Vi N H; # §. In this situation, if ¢ is the
associated cycle in G (&), then {vg, h;} € E(G(Z?)) is a chord in €.

Let €% : a1, as, ..., a, be acycle in & which does not have any self-crossing.
Then, we call the area bounded by the edge intervals [a;, a;+1] and [a,, a1] for
i € {1,r — 1}, the interior of €. Moreover, we call a cell C is an interior cell of
2 if C belongs to the interior of €.

Lemma 8.32 Let & be a simple polyomino. Then, the graph G(Z?) is weakly
chordal.

Proof Let € be a cycle of G(£?) of length 2n with n > 3 and €% be the associated
primitive cycle in . We may assume that 6 does not have any self-crossing.
Otherwise, by following the definition of self-crossing, we know that ¢ has a chord.

Let € : U,‘l,hjl,v,'z,/’ljz,...,U,’r,/’ljr and € V,'I n Hjl’ V,'2 N Hil’ V,'2 n
Hj,...,Vi, NH;,Viy NHj . Wemay writea; = V;, NHj,,a0 =V, NHj,a3 =
ViuNHjy, ..., a0—1 = Vi, NHj,, ay = V;; N Hj,. Also, we may assume that a; and
a> belong to the same maximal horizontal edge interval. Then, ay, and a; belong to
the same maximal vertical edge interval.
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Fig. 8.32 A maximal inner
interval

ay ay

First, we show that every interior cell of ¥4 belongs to &?. Suppose that we have
an interior cell C of €% which does not belong to . Let _# be any interval such
that & C _¢#. Then, by using the definition of simple polyomino, we obtain a path
ofcells C =Cy(,Cs,...,CywithC; ¢ P,i =1,...t and C; is a boundary cell in
J . Itshows that V(C1) U V(C2) U... U V(C,) intersects at least one of [a;, a;+1]
fori € {1,...,r —1} or [@,, a1], which is not possible because € is a cycle in Z.
Hence, C € . It shows that an interval in the interior of ¥ is an inner interval
of Z.

Let .# be the maximal inner interval of ¥ to which a; and a; belong and let
b, c the corner vertices of .#. We may assume that a; and c are the diagonal corners
and ap and b are the anti-diagonal corners of .Z. If b, ¢ € V(€ #»), then primitivity
of € implies that €’ is a cycle of length 4. We may assume that b ¢ V(€»). Let H’
be the maximal horizontal edge interval which contains b and c¢. The maximality of
7 implies that H' NV (€%) # §. For example, see Figure 8.32. Therefore, {v;,, h'}
is a chord in €. O

Proof (of Theorem 8.31) First, we show that I C Lg. Let f = xjjxu —
xiixxj € Ip. Then, there exist maximal vertical edge intervals V, and V, and
maximal horizontal edge intervals H,, and H, of & such that (i, j), (i,]) € V),
(k, j), k, 1) € V,, and (i, j), (k,j) € Hy, (i,D, (k,]) € H,. It follows that
©(xijxr1) = vphmhnvy = @(xi1xg;). This shows f € Lp.

Next, we show that L g C [g. By Corollary 5.15, the toric ideal of a weakly
chordal bipartite graph is minimally generated by quadratic binomials associated
with cycles of length 4. Thus, it suffices to show that fz € I where € is a cycle
of length 4 in G(&?).

Let .# be an interval suchthat 2 C .. Let% : hy, vi, hy, v2. Then, €% : ai1 =
H\ NV, a1 = HoNVy,a0 = HoNV;,and a1 = H; NV, is the associated cycle in
& which also determines an interval of .#. Let aj; and ap, be the diagonal corners
of this interval. We need to show that [a11, a22] is an inner interval in &?. Assume
that [a11, apz] is not an inner interval of &2, that is, there exists a cell C € [aq1, ax]
which does not belong to &?. Using the fact that &7 is a simple polyomino, we
obtain a path of cells C = C,Ca,...,C, with C; ¢ &, i = 1,...,r and C, is
not a cell of .#. Then, V(Cy) U ... U V(C,) intersects at least one of the maximal
intervals Hy, H, V1, Va2, say Hi, which contradicts the fact that H; is an interval in
Z. Hence, [a, ax] is an inner interval of &2 and f¢ € I, as desired. |
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Problems

8.4 Give a direct proof of the fact (avoiding Theorem 8.21) that a row or column
convex polyomino is balanced.

8.5 Show that convex polyominoes are simple.
8.6 Show that a simple polyomino has no holes.

8.7 Show that each hole of a polyomino is a polyomino.

Notes

Ideals generated by the #z-minors of an m X n-matrix of a matrix X = (x;;) of
indeterminates is a classical subject of studies, cf. [29, 117]. Some of these results
have been extended to ideals generated by the ¢-minors of one- and two-sided
ladders [36]. Ideals generated by sets of 2-minors are binomial ideals. In Chapter 7,
any set of 2-minors of a 2 x n matrix is considered. The study of general sets of
2-minors of an m x-matrix with m, n > 3 requires some additional assumptions on
this set. Among the first papers dealing with such class of ideals are those of Hosten
and Sullivant [120] and of Qureshi [172]. Motivated by applications in algebraic
statistics, ideals generated by adjacent 2-minors have been introduced by Hosten and
Sullivant, while Qureshi was the first to consider polyomino ideals. The results on
ideals generated by adjacent 2-minors are presented in Sections 8.1, 8.1.2 and 8.1.3
and are taken from [96].

One of the central problems in the algebraic theory of polyominoes is the
classification of prime polyominoes which are those polyominoes whose polyomino
ideal is a prime ideal. A first result in this direction was presented in Qureshi’s paper
[172], where it is shown that convex polyominoes are prime. In [103], balanced
polyominoes were introduced and it was shown that balanced polyominoes are
prime and that their residue class ring is a normal Cohen—Macaulay domain, see
Corollary 8.17 and Corollary 8.20. Later, Herzog and Saeedi Madani showed in
[102] that a polyomino is balanced if and only if it is prime. This result is presented
in Section 8.2.2, see Theorem 8.21. As a consequence, one obtains that simple
polyominoes are prime, see Corollary 8.22. An independent proof of this fact
is given by Qureshi, Shibuta, and Shikama in [173]. Their proof is presented in
Subsection 8.2.3. It is still an open problem to classify all prime polyominoes. A
few other classes of polyominoes, other than simple polyominoes, are known to be
prime [113]. Since the residue class ring of a polyomino ideal of a simple polyomino
is a normal domain, it would be of interest to know the class group of such rings.
From [172], this is only known only for the so-called stack polyominoes in which
case also the Gorenstein polyominoes among them are determined.



Chapter 9 ®
Statistics et

Abstract Diaconis—Sturmfels (Ann. Statist. 26:363-397, 1998) introduced a
Markov chain Monte Carlo method based on the algebraic theory of toric ideals.
This approach turned out to be one of the origins of Algebraic Statistics which has
become a very active and interesting research area. In this chapter, we give a survey
on this concept and on related topics. In Section 9.1, we introduce the basic facts
on contingency tables. In particular, “the p-value” is explained by an example of a
2-way contingency table. In Section 9.2, Markov bases are introduced. The Markov
chain Monte Carlo method of Diaconis—Sturmfels is discussed, emphasizing the
fact that any Markov basis in their theory corresponds to a set of binomial generators
of a toric ideal. In addition, in Section 9.3, we discuss the method of a sequential
importance sampling, and its relationship with the normality of toric rings. In
Section 9.4, we study the toric rings and ideals of hierarchical models. In particular,
the toric rings of no m-way interaction models are related to the notion of rth
Lawrence liftings. Finally, in Section 9.5, as generalizations of Segre products and
Veronese subrings, the so-called Segre—Veronese configurations are considered.
This kind of configurations are applied to a test for the independence in group-wise
selections.

9.1 Basic Concepts of Statistics (2-Way Case)

We start with an example of a 2-way contingency table appearing in [106].

A class has 26 students and all students take subjects “Geometry” and “Probabil-
ity.” The score of each subject is one of 5, 4, 3, 2, 1. The following table Ty classifies
the students according to their scores on Geometry and Probability.
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Geom. \ Prob. |5 4 3 2 1 Total
5 2 1 1 0 0 4
4 8 3 3 0 0 14
3 0 2 1 1 1 5
2 0 0 0 1 1 2
1 0 0 0 0 1 1
Total 10 6 5 2 3 26

For example, there are 8 students whose score on Geometry is 4 and whose score
on Probability is 5. The sequence 10, 6, 5, 2, 3 is the number of students whose
score on Probability is 5, 4, 3, 2, 1, respectively. This sequence and the sequence 4,
14,5, 2, 1 are called the marginals of the contingency table. The table Tj is a 2-way
contingency table of size 5 x 5 whose sample set consists of 26 students. The entries
of the contingency table are called cells. There are two factors (scores on Geometry
and on Probability) and each factor has 5 categories (5, 4, 3, 2, 1). Here, we call the
contingency table “2-way” since there are 2 factors considered.

We would like to know whether the scores on the two subjects are correlated.
First, we suppose the null hypothesis Hy which says that the scores on the two
subjects are independent. If Hy is true, then we can compute the expected value
of each cell by knowing the marginals of the contingency table. For example, the
expected value of the (2, 1) cell (i.e., the number of the students whose score of
Geometry is 4 and whose score of Probability is 5) is

14 10

2% . — . —
6 26 26

=538.--.

Let e;; denote the expected value of the (i, j) cell. Then, the table T, = (e;j)1<;,j<5
of the expected values is

Geom. \ Prob. |5 4 3 2 1 Total
5 1.54 | 092 | 0.77 | 031 | 046 | 4

4 538 | 323 | 2.69 | 1.08 | 1.62 |14

3 192 | 1.15 | 096 | 038 | 0.58 | 5

2 0.77 | 0.46 | 0.38 | 0.15 | 0.08

1 0.38 | 0.23 | 0.19 | 0.08 | 0.12

Total 10 6 5 2 3 26

One of the common methods, the so-called x? test, compares Ty with 7, by the x?
statistics which measures the difference of Ty and 7,. For the table Ty = (#;;), the
x? statistics is given by the formula:
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5 5 (ti' _ €i')2
(M) =Y > L4 =25338.
i=1 j=1

e; j
Let #r,, denote the set of tables with the same marginals as Tp:

ti tio ti3 ha 15 4
1 I 13 14 5|14
131 132 133 134 135 5
141 142 143 144 145) 2
Is| 152 t53 154 ts5| 1
106 5 2 326

ETOZ T=(l‘[j) : Ofl‘ijGZ,

Note that if 7 = (#;;) belongs to Fr,, then 115, 125, 135, 145, 155, 151, 152, 153, and ts4
are determined by #;; (1 <1 < 4,1 < j < 4). We say that the degrees of freedom
is (5 — 1)(5 — 1) = 16. If the hypothesis Hj is true, then it is known that the x2
statistic has an asymptotic x> distribution with degrees of freedom v = 16. More
precisely, consider the function

xv/Z—le—x/Z .
fo) = | e X 20
0

otherwise

with v = 16, see Figure 9.1. Then, fab f(x)dx approximates the probability that
T e 7, satisfies a < x2(T) < b. In particular, we have fooo f(x)dx = 1. 1In
Figure 9.2, the shadowed area represents the upper 5% of the distribution, that is,
Jog 30 f (x)dx = 0.05. Thus, for & > 26.30, f;" f(x)dx < 0.05. So, any T with

x%(T) > 26.30 is considered to be rare, because T appears with probability < 0.05.
Since XZ(TO) = 25.338 is less than 26.30, our conclusion is “we cannot reject Hyp.”
If x2(Tp) > 26.30, then we conclude that Hy is rejected and hence the scores on
the two subjects are correlated.
However, there is a problem with this method. There might not be a good fit
with the asymptotic distribution if, for example, one of the following conditions is
satisfied:

(1) The cardinality of the sample set is small;
(i) The contingency table is sparse, that is, it has many zero cells.

The cardinality of the sample set is 26 and this is small. Moreover, the contingency
table Ty has many cells which are zero. Hence, x> test may be not good for the
contingency table Tp.

For this reason, we may use Fisher’s exact test. We now assume that Hy is true
and that .Fr; follows the multiple hypergeometric distribution, that is, for each T =
(tij) € T,, the probability of the occurrence of T is
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0.06 -

0.04 -

0.02

Fig. 9.1 2 distribution

0.06 -

0.04 -

0.02 -

Fig. 9.2 Upper 5% of the x? distribution

4114151211110!6!5!2!13!

h(T) = ,
1 26!Hi,jtij!

where the numbers appearing in the numerator correspond to the marginals of 7p.
Note that #(T') equals to the following probability:

(a) There are 26 balls in a large box;

(b) Among 26 balls, there are 4 balls labeled “1,” 14 balls labeled “2,” 5 balls
labeled “3,” 2 balls labeled “4,” and 1 ball labeled “5” (each ball has exactly
one label);
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(c) There are 5 small boxes labeled from “1” to “5”;

(d) We pick the balls from the large box one by one and at random (without seeing
the labels), and put them into the small boxes so that 10 balls are in the box
labeled “1,” 6 balls are in the box labeled “2,” 5 balls are in the box labeled “3,”
2 balls are in the box labeled “4,” 3 balls are in the box labeled “5,” respectively.

(e) The number 4 (T) equals to the probability that the number of the balls labeled
“1” in the box labeled “j” is t;; for all 1 < i, j < 5. In fact, the number of
permutations of 26 balls (ignoring the small boxes) is

26!
0= —
41141512!1!

and the number of permutations of 26 balls which satisfies condition “the
number of the balls labeled “i” in the box labeled “;j” is #;; forall 1 < i, j <57
is

10! 6! 5! 2! 3! . 10!6!5!2!3!
l_[?zlfn! nletﬂ! l_[lefis! 1_[?:111'4! nlefiS! Hi,./tif!

Thus, the probability is 8/« = h(T).

ﬂ:

For Fisher’s exact test, we compute the p-value:

p= > h(T).

Tefgfo
x2(T)=x*(Tp)=25.338

The p-value is the probability that the x? statistics of T € .% is greater than or
equal to x2(Tp) = 25.338. If p < 0.05, then it means that the probability is very
small and x (7o) is very rare. Thus, we conclude that Hy is rejected and hence the
scores on the two subjects are correlated. In our particular case, p = 0.0609007 and
hence our conclusion is “we cannot reject Hy” again. However, in order to compute
p-value, we have to

e compute the X2 statistics for all tables in %7, which consists of 229174 tables,
* select all the tables 7 with x2(T) > 25.338, and
e compute the sum of the value 4 (T) of them.

It is impossible to compute the p-value if the cardinality of the set %7, is very big.
If the x? test cannot be applied to provide a reliable result, for example, if the
contingency table is sparse, and if, in addition, we cannot compute the exact p-value,
then we can use the Markov chain Monte Carlo method (called MCMC method for
short). The MCMC method is a sampling from .%7, by using “Markov bases.”
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Problems

9.1 A class has 70 students and all students take subjects “Set Theory” and “Group
Theory.” The score of each subject is one of 5, 4, 3, 2, 1. The following table Ty
classifies the students according to their scores on Set Theory and Group Theory.

S.\G. |5 4 3 2 1 Total
5 4 2 0 0 0 6
4 1 6 2 1 0 10
3 0 1 11 6 1 19
2 0 2 4 12 3 21
1 0 0 0 3 11 14
Total 5 11 17 22 15 70

Suppose the null hypothesis Hy which says that the scores on the two subjects are
independent.

(a) For the table Ty = (#;;), compute the x 2 statistics x2(Tp).
(b) Test Hy by using x? distribution with degrees of freedom 16.

9.2 Markov Bases for m-Way Contingency Tables

Let . be a finite set of N elements, which is called the sample set. For k =
1,...,m, let X = {Yl(k), Y,(f)} such that . = U;k=1 Y;k) and that Yl(,k) N
Yq(k) =f@Pforl < p<gqg <rg, 1 <k <m. Each Xy is called a factor, and each

Y® s called a category. An m-way contingency table of size 1 X --- X ry, is an
m-dimensional array

T = (til"'im)lfilSr]<--.vl§i)11§rm

=tjjiy forl <iyp <ry,...,1 =

.....

im <rm.

For example, for the contingency table Ty in the previous section, . consists of
N = 26 students, there are m = 2 factors, the score on Geometry is the factor X; =
{Yl(l), R YS(I)}, and the score on Probability is the factor X, = {Yl(z), el YS(Z)},
where the category Y 1(1) consists of the students whose scores of Geometry is 5,

the category Yl(z) consists of the students whose scores of Probability is 5, and so
on. Recall that, for the 2-way contingency table 7o = (x;j)1<;,j<5 of size 5 x 5
discussed in the previous section, we defined .%7, to be
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5 5
Fr,=1T = (tij) € ZSZBS : Zh’j = inj (I<j<5),

i=1 i=1
5 5
Zlij = inj (I=i=<53)
j=1 j=1

Let Tj be the following 3-way contingency table of size 2 x 2 x 2.

X3 v oS
2 2 2 2
X\X> [ ¥® vy y?
I
Yl( ) X111 X121 | X112 X122
Y X
2 211 X221 X212 X222

For the definition of .%7,, there are many other natural choices. For example,

Ty = VT ezx? . gk A= 2k ¥1jke. 2 g ik 2k itk
0 —\

=0 Do =D Xijte D lijk= Dk Xijk

©.1)
liji +tij2 = Xij1 + Xij2
Fry = T=(tiji) € 222)62X2 Dtk =x1j+xp (1S4, j,k<2)
lilk + tiok = Xilk + Xi2k
9.2)

are possible in this case. We identify 2 x 2 x 2 array T = (#;x) with the vector

t
(t111, t112, 121, 122, 211, 0212, 1221, 1222)° -

Then, the above %7, is of the form
Fr, = {T = (tijk) € Z22>(<)2X2 AT = AT()}

for a suitable integer matrix A whose column vectors are indexed by ijk with 1 <
i, j, k <2.In fact, in our example we have

11110000
A:11001100
10101010
11111111
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for (9.1), and

11
11
11
11
1 1
A= 1 1
1 1
1 1
1 1
1 1
1 1
1 1

for (9.2). Such a matrix A is called a model matrix. For an m-way contingency table,
we can define a model matrix in the same way. In particular, the columns of a model
matrix of an m-contingency table of size r1 x - - - X r,, are indexed by the sequences
iy ipwithl <iy <ri,...,1<ip <ry

Let A be a model matrix for m-way contingency tables of size r; x - -- X ry, and
set

Kerz(A) = {M e 2" . AM = 0}.

It is easy to see that if 7 and 7" belong to %7, for a contingency table Tp, then we
have T — T’ € Kery(A).

Definition 9.1 Let {M;,..., M;} be a finite subset of Kerz(A). Then,

{My, ..., Mg} is called a Markov basis for A, if for any m-way contingency table
To of size r| X -++ X ry, and for any T, T’ € Fp,, there exist M, ..., M;, such
that
A
T'=T+ ZEkMik’ where g, € {(£1} (1 <k < A),
k=1
A
T+Y aM,eFy (1<L<A).
k=1

We assume that, for each T € .%7,, the probability of the occurrence of T is
defined by some distribution /(7). (For example, in the previous section, h(T) is
the multiple hypergeometric distribution.) Using the Markov basis {M, ..., M},
we have a sampling by the following algorithm:
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Algorithm (Metropolis—Hastings)
1. Choose T € Zr, atrandom and set 7' = T;
2. Repeat the following:

2.1. Select M; from {My, ..., M} at random (with probability 1/£);
2.2. Select ¢ from {%1} at random (with probability 1/2);
2.3. If T'4+&M; is a nonnegative matrix, then set T/ = T’ +&M; with probability

(T 4+ eM;)
ny —————=, 1
h(T")
Since {My, ..., My} is a Markov basis, there exist no unreachable elements of

F1, in the Metropolis—Hastings algorithm. By this algorithm, we have a sequence
of tables

T(l), T(Z), ...,T(S) eyTO’

which follows the distribution #(7'). Recall that the p-value of Tj is

p= Y. h(@.

TGﬁTO
x2(T)=x>(Ty)

Since h(T) is the probability of the appearance of T in %z, following the
distribution A (T), the p-value is the probability of the appearance of the tables in
Fr, such that their x? statistics is greater than or equal to that of Ty. From the
sample {T(l), e, T(s)}, we estimate the p-value of Ty by:

ke f{l,....s} : x2(T®) > x*(Tp)}]
. :

(9.3)

which is the percentage of the tables in {71, ..., T®)} such that their x? statistics
is greater than or equal to that of Ty. Since {T(l), e, T(S)} follows the distribution
h(T), the value (9.3) approximates p-value.

Example 9.2 A Markov basis for the model in the previous section is well known.
Let .55 denote the set of all integer 5 x 5 matrices which satisfy that the sum of
all entries of each rows and each columns is zero. Let {M1, ..., Migo} be the set of
all 5 x 5 matrices of the form

J1 2

i1 +1 —1
G(//5><5.
i2 -1 +1
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Then, {M1, ..., M1po} is a Markov basis. For example,
12100 21100
73310 63410
T=\|11111|, T"=]12011
10001 10001
00001 00001

belong to .#7;, and

1 —=1000 00 0O0O0

—1 1000 01 —-100
M=]0 0000], M=|0-1100]|¢e{M,..., Mo}

0 0000 00 000

0 0000 00 000

satisfy

12100 21100 21100
73310 64310 ) 63410
T=1]11111 ﬂ) 11111 Efroﬂ T"=]12011
10001 10001 10001
00001 00001 00001

In general, it is difficult to compute a Markov basis for a given model matrix A.
Diaconis and Sturmfels [53] found the relationship between a Markov basis and the
toric ideal of a model matrix.

Example 9.3 Let Ty be a 2 x 3 contingency table. Consider the model matrix

111000
000111
A=1100100
010010
001001

Then,
M = 1 —-10 My = 01 -1 M= 1 0-1
-1 10 0-11 —-10 1
is a Markov basis. We identify these matrices with the integer column vectors

Mi=(1,-1,0,-1,1,0)", Ma=(0,1,-1,0,—1,1)", M3 = (1,0, -1,—1,0, )",
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The column vectors belong to Kerz(A), and the toric ideal 74 of A is generated by
the binomials

fmy = x1x5 — x2x4,

fmy = x2x6 — X35,

Smy = X1x6 — X4X6.

The correspondence in Example 9.3 holds in general.

Theorem 9.4 Let A be a model matrix. Then, a finite subset 8 = {M\, ..., M;} of
Kerz(A) is a Markov basis for A if and only if 14 is generated by fuy,, ..., fm,-

Proof Note that I C 4. For any contingency tables T and 77,

T

T,T' € Fr, for some Ty <= AT = AT' <= x' —x eI,

On the other hand, by Corollary 3.10, T and T’ are connected via 48 if and only if

xT — x™’" belongs to I5. Thus, 2 is a Markov basis for A if and only if I, = I,
which is equivalent to say that /4 is generated by fu,, ..., fum,. O
Problems

9.2 Show that any proper subset of {M, M3, M3} in Example 9.3 does not satisfy
the condition in Definition 9.1. (Do not use Theorem 9.4.)

9.3 Consider the model of the 2-way contingency table Ty = (x;j)1<;,j<5 of size
5 x 5 discussed in the previous section.

(a) What is the model matrix A in this case?

(b) Let {My,..., Mg} be the Markov basis defined in Example 9.2. Show
that every proper subset of {M1, ..., Moo} does not satisfy the condition in
Definition 9.1.

(c) Estimate the p-value in this case by the MCMC method using the Markov basis
{My, ..., Mo}

9.3 Sequential Importance Sampling and Normality of Toric
Rings

Sequential importance sampling is another method to estimate the p-value. We go
back to the first example of this chapter: let 7 be the table
Then, we can choose T = (#;;) € .7, randomly as follows:
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Geom. \ Prob. |5 4 3 2 1 Total
5 2 1 1 0 0 4
4 8 3 3 0 0 |14
3 0 2 1 1 1 5
2 0 0 0 1 1 2
1 0 0 0 0 1 1
Total 10 6 5 2 3 26
Choose t11 from {0, 1, ..., min{4, 10}} randomly, say #;; = 3. Then, we consider
Geom. \ Prob. |5 4 3 2 1|Remainder| | Geom. )\ Prob.|5 4 3 2 1 Total
5 Voo - - -1 5 3 3
4 - - - - -14 4 0
3 - - - - -5 3 0
2 - - - - -2 2 0
1 - - - - -1 1 0
Remainder 7 652323 Total 300003

Choose tp1 from {0, 1, ...

, min{14, 7}} randomly, say 21 = 5. Then, we consider

Geom. \ Prob. |5 4 3 2 1 |Remainder| |Geom.\Prob.|5 4 3 2 1 Total

5 vVio- - - -1 5 3 3

4 vVo- - --19 4 5 5

3 - - - - -5 3 0

2 e 2 0

1 R | 1 0

Remainder 2 652318 Total 800008

Finally, we get a table T = (#;;), say,

Geom. \ Prob.|5 4 3 2 1 |Remainder| |Geom.\Prob. 5 4 3 2 1| Total
5 v VvV v /o 5 301004
4 v VvV v Vo 4 5 332114
3 v vV v v V|0 3 1 200 2|5
2 v vV v v V|0 2 1 01002
1 Raaaan 1 0 10001
Remainder 00 O0O0O0|0 Total 10 6 52 3|26
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For any 2-way contingency tables, this method does not get stuck. However, there
exists a 3-way contingency table for which this method gets stuck.
Consider, for example, the following 4 x 4 x 4 contingency table Ty:

1000 0001 0100 0001
0010 0000 1000 0100
0100 0010 0001/ 0000
0000 1000 0001/ 0010

To = (xijk) =

and let

4 4
it Zﬁ:l lije = Zﬁ:lxijé
XaX . .
ﬁT{) =4T = (tijk) € Z>O : ZZ:] tojk = ZZ:] Xejk (1<i, J,k <4)
= 4 4
Doi=1 litk = Dy Xitk

(9.4)

Then, F7, is the set of contingency tables T = (t;jx) whose marginals are:

1102
1110
0111
1011

Njk Dk 13k 14k

O = = =
—_ e O =
—_ =
—_— O = =

1110 1011 /1 102 0111

Here, the rightmost table is (m ji) j=1...4 where mj; = Z?:l xijk- Then, we try
k=1,...,.4

to choose T = (tjx) in %7, randomly. For example, choose t314 from {0, 1}
randomly, say 314 = 1. Then, we consider the incomplete contingency table with
t314 = 1 fixed, the other entries undetermined, and the bold marked marginal
changed accordingly.

S ) P A0 1 P

1101
e ) i 1 FE |

1110
S ) i )

0111
Bt 1 e L
11103 10113 11013 011713

However, at this point, we can predict that we will be stuck. There isno 4 x 4 x 4
table whose marginals are as above and 1314 = 1. What is the difference between two
examples above? The toric ring of the model matrix of the 2-way contingency table
is normal since it is the edge ring of the complete bipartite graph (Theorem 5.20).
On the other hand, the toric ring of the model matrix of the 4 x 4 x 4 table is not
normal. It will turn that the sequential importance sampling does not work for all



284 9 Statistics

cases when the toric ring of the model matrix is not normal, while it works in all
cases when it is normal.

Let A444 be the model matrix which defines .#7, as in (9.4). Since each entry of
Tp is a nonnegative integer, it is clear that A4447p belongs to Z>oA444, wWhere, as in
Chapter 4, Z >0 Aaa4 denotes the linear combinations of the column vectors of A444
with nonnegative integer coefficients.

Let v be the vector corresponding to the (new) marginals:

1 (1) (]) : 1101
1 1 1 0 L1Lo 9.5)
0 1 1 | 0111

1011

1110 1011 1101 [|0111

Then, v belongs to ZA4aa, since v = Aq44Ty — a314. However, one can check that
the vector v does not belong to Z>oA444, see Problem 9.4. This is equivalent to say
that there exists no table T such that A444T = v. Of course, v should at least belong
to Q@>0A444. Then, if Q>0A444NZAsas = Z>0As44, then v is a possible marginal
vector. However, in general, one only has Z>0A444 € Q>0A444NZ Asa4. Indeed, in
our example V € Q>0A44aNZAsaa \ Z>0As44. In fact,

1/21/2 0 0/1//1/20 0 121/ 0 00 0 0 /01/2 0 1/2]1

1/2 0 1/201 0 0 0 0 0 1/21/20 0 1 01/21/2 0 |1 H?é
0 1/21/201 0 01/21/21 0 1/201/21 0 0 0 000111
0 0 000 1/201/2 0 1 1/2001/210 0 1/21/21
1 1 10 101 1 1 101 01 1 1
Problems

9.4 Check that there exists no 4 x 4 x 4 table T such that Ag44T = v, where A444
and v are defined as in (9.4) and in (9.5).

9.5 Verify whether the model matrix A444 above is very ample or not.

9.4 Toric Rings and Ideals of Hierarchical Models

Let T = (t,...;,,) be any m-way contingency table of size ry x --- x rp. With each
subset F' = {i1,...,is}of [m] ={1,...,m}and each ({;,,..., €; ) € [r;] x--- %
[r;,], we associate the number
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Fooo_
Ty otiy = > Tyt

(ejl """ z]‘m—s)e[r]'l]X"'X[rjm—s]

where {1, ..., jm—s} =[m]\ F.

This concept can be used to describe various models for 7. To explain this, we

consider our example (9.1), which for Ty = (x;jx) € Z22>(<)2><2 is given by

Zr = VTt 72x2x2 Zj,k tljk:Zj,k Xljks  Doig k= D_j g Xilks
I, = 1 T=(ijx) € 22, : _ - .
= D =20 Xijl 2 fijk = D jk Xijk
By using the above notation, .#7, can also be expressed by

ﬁTo = {T = (tijk) (S ZZZ>(<)2><2 . tl{l} = x{l}, tiz} = X{2}, t{3} :x{:;}’ [M = x“} s

or by

{1 {1} {2} {2} 3} {3}
t. = X t. =Xx; t =X
Fr, =131 = (tijk) € 72x2x2 i Lo J 7 k k .
° { ) € 0 (=i jk=2)

Similarly, the model for T given in (9.2) can be expressed as

{12} {12y {23} 2,3y {13} {1,3}
t.. = X.. t. = X. t. = X.
Fr, =3T=(x) € ZZXZXZ: ij ij o jk jk 0 ik ik
’ { R (I <i,j,k<2)

Thus, these models are characterized by the sets D1 = {{1}, {2}, {3}} and D> =
{{1, 2}, {2, 3}, {1, 3}}, respectively. In fact, the model for Ty given in (9.1) can be
expressed as:

1

Ty = |T = () € 2272 of =x foral Fe Dyand1 =i <2 |,
and the model for Ty given in (9.2) can be expressed as:

T, = [T = (tijr) € Z237? 1 1} =x[ forall F e Dyand 1 <i, j < 2}.

We now consider again the general case, and let F’ be a subset of F =
{i1,..., iy} C [m]. With a loss of generality, we may assume F' = {if,...,i}.
Then,

F’ _ F
t/lil el T Z tlil el

iy yy i €lrip 1% X[rig]
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Hence, for each (¢;,, ..., ¢;,) € [riy] x -+ x [r;,], if
r =xF for all (¢; £ - ;
tfil“'fig = xgil..igis orall (¢, ,,...,¢;) €lri Jx- x[rgl,
F' _ L F
then tzi1 ity = xeil )"

For example,

{1} {1,2} {1,2}
Lho=h1 T,

and hence,
(1,2} (1,2} {1,2} {1,2} (1 n
tl,l .

=x; andr ;7 =x 5 =1 =x;

In conclusion, we see that the above two models for 7 are determined by the
simplicial complexes:

A =1{0, {1}, {2}, (3}, A2 =1{0, {1}, {2}, {3}, {1, 2}, {2, 3}, {1, 3},

respectively. In fact, the model for 7y given in (9.1) can be expressed as:

tF =xf
2x2x2 biy b ks
Fry =T = Wiji) € ZZy7"" ¢ forall F = {iy,...,is} € Ay [+
and 1 5@,‘1,...,653 <2
and the model for 7y given in (9.2) can be expressed as:
F _ . F
2x2x2 fy oty = Yyt
Ty =T = (tijk) € 2257 ¢ forall F = {iy, ..., is} € Ay
and 1 < ¢;,...,¢;, <2

Definition 9.5 A model of an m-way contingency table Ty of size r| X - -+ X 1y, is
called a hierarchical model, if there exists a simplicial complex A on [m] such that

F _ L F
tfil"-fis - xfil-"fis
Fry=1T = (tilwim)lliillzfrk : forall F = {iy,...,is}e A
=k=m
and (4;,, ..., 4;,) € [ri;] < - x [ri,]

The model matrix of this hierarchical model given by A will be denoted by
Apyory (A).

In this section, we study the toric ring and ideal of hierarchical models. One
reason for doing this is that any finite binomial system of generators of these toric
ideals gives us a Markov basis for the model. Moreover, if we can show that for a
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hierarchical model matrix A,,...,,, (A) the associated toric ring is normal, then this
implies that Q>0A,...r,, (A)NZAy,...r,, (A) = Zx0Ay, ..., (A). This property then
simplifies the sequential importance sampling process, as explained in the previous
section. In the next two subsections, we consider special classes of hierarchical
models.

9.4.1 Decomposable Graphical Models

For a simplicial complex A on {1, 2, ..., m}, let Facet(A) be the set of all facets
of A. Given an m-way r| X - -+ X rp, contingency table with the hierarchical model
given by A, let

KIX] = K[xj,..i, : 1 <ij<rj(1<j<m)],
Kl = K[tf ., t F={ki,... .k} € Facet(4), 1 < €; <ry, (1 < j <n)]

be polynomial rings over a field K. The toric ideal of the model matrix A,,...,,, (A)
is denoted by I, (A). Then, the toric ideal I, (A) is the kernel of homomor-
phism

1*'m 1" T'm

7w K[x] — K]|t]

defined by:

— F
i) = T,

F={ky,...,k,}€Facet(A)

Example 9.6 We consider a 3-way 2 x 2 x 3 contingency table with the hierarchical
model given by the simplicial complex A = {4, {1}, {2}, {3}, {1, 2}, {2, 3}}.
Then, Facet(A) = {{1, 2}, {2, 3}}, and

K[x] = K[x111, X112, X113, X121, X122, X123, X211, X212, X213, X221, X222, X223],
{2y {2.3} {2.3} _{2,3} _{2.3} {23} {2.3}

(1,2} .{1,2} .{1,2}
K[t] = K117 117 ) by 7 1 57 T 1y
. . (1,2} (2,3}
Furthermore, 7 : K[x] —> K[t] is defined by 7 (x;jx) = AT
Proposition 9.7 Let A be a simplicial complex and let ry, ..., ry and sy, ..., Sy

be integers such that s; < r; forall 1 <i < m. Then, Ay, ..;, (A) is a combinatorial
pure subconfiguration of Ay, ..., (A).

The proof is left as a problem to the reader (Problem 9.6).
Let A be a simplicial complex on [m] = {1, 2, ..., m}. Recall the definition of
a leaf of A, a branch of a leaf, a leaf order, a quasi-forest, and a quasi-tree, given
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in Chapter 7. A simplicial vertex of a leaf F is a vertex j € F such that j ¢ H
for all facets H of A with H # F. It is clear that a vertex j € F is a simplicial
vertex of F if and only if j belongs to '\ G, where G is a branch of F. Given a leaf
order F1, F, ..., Fy, let A; be the subcomplex (F1, Fa, ..., F;) of A. A separator
of A is asubset W C [m] with the property that there are subsets U, and Uy, of [m]
satisfying the following conditions:

[ml=U,0U,, W=U,NUp, U \WH@, Up\W#,
{i,j}l ¢ Aforalli e U\ Wand j € U, \ W.

Let A be a quasi-forest on [m] with a leaf order Fi, ..., F,. For each leaf F;, of
the subcomplex A, fix a branch F,/ of F,, where 1 < q’ < g. Let T denote the
finite graph on the vertex set [r] with the edges {2/, 2}, {3', 3}, ..., {r/, r}. It then
follows that 7 is connected. Since T has r vertices and r — 1 edges, T is a tree. The
tree T is called a relation tree of A.

Example 9.8 Let A = {{1,2,3},{3,4,5},{2,4, 6}, {2, 3,4}}. Then, A is a quasi-
forest on [6] with a leaf order
Fr={1,2,3}, F,={3,4,5}, F;={2,4,6}, Fy ={2,3,4}.
With respect to this order, the edge set of the relation tree is:
{1, 4}, (2,4}, {3, 4}}.
On the other hand, A is a quasi-forest on [6] with a leaf order
Fir=A{1,2,3}, F, =1{3,4,5}, F5=1{2,3,4}, F4 ={2,4,6}.
With respect to this order, the edge set of the relation tree is:
{1, 3}, {2, 3}, {3, 4}}.

Let {¢’, g} with ¢’ < ¢ be an edge of T. By deleting the edge {¢q’, g} from T,
one obtains two trees T,/ a